The effect of rheumatoid arthritis on the
We carried out a cadaver study of 16 iliolumbar veins in order to define the surgical
The purpose of this study was to determine whether
it would be feasible to use oblique lumbar interbody fixation for
patients with degenerative lumbar disease who required a fusion
but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal
disease were reconstructed in three dimensions (3D) using Mimics
v10.01: a digital cylinder was superimposed on the reconstructed
image to simulate the position of an interbody screw. The optimal
entry point of the screw and measurements of its trajectory were
recorded. Next, 26 cadaveric specimens were subjected to oblique
lumbar interbody fixation on the basis of the measurements derived
from the imaging studies. These were then compared with measurements
derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for
L1/2, L2/3 and L3/4 fixation: there was no significant difference
in measurements between those of the 3-D digital images and the
cadaveric specimens. For L4/5 fixation, part of L5 inferior articular
process had to be removed to achieve the optimal trajectory of the
screw. For L5/S1 fixation, the screw heads were blocked by iliac
bone: consequently, the interior oblique angle of the cadaveric specimens
was less than that seen in the 3D digital images. We suggest that CT scans should be carried out pre-operatively
if this procedure is to be adopted in clinical practice. This will
assist in determining the feasibility of the procedure and will
provide accurate information to assist introduction of the screws. Cite this article:
The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique. This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.Aims
Methods
To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.Aims
Methods
To evaluate the perioperative complications associated with total en bloc spondylectomy (TES) in patients with spinal tumours, based on the extent and level of tumour resection. In total, 307 patients who underwent TES in a single centre were reviewed retrospectively. There were 164 male and 143 female patients with a mean age at the time of surgery of 52.9 years (SD 13.3). A total of 225 patients were operated on for spinal metastases, 34 for a malignant primary tumour, 41 for an aggressive benign tumour, and seven with a primary of unknown origin. The main lesion was located in the thoracic spine in 213, and in the lumbar spine in 94 patients. There were 97 patients who underwent TES for more than two consecutive vertebrae.Aims
Methods
Open discectomy (OD) is the standard operation for lumbar disc herniation (LDH). Percutaneous endoscopic lumbar discectomy (PELD), however, has shown similar outcomes to OD and there is increasing interest in this procedure. However despite improved surgical techniques and instrumentation, reoperation and infection rates continue and are reported to be between 6% and 24% and 0.7% and 16%, respectively. The objective of this study was to compare the rate of reoperation and infection within six months of patients being treated for LDH either by OD or PELD. In this retrospective, nationwide cohort study, the Korean National Health Insurance database from 1 January 2007 to 31 December 2018 was reviewed. Data were extracted for patients who underwent OD or PELD for LDH without a history of having undergone either procedure during the preceding year. Individual patients were followed for six months through their encrypted unique resident registration number. The primary endpoints were rates of reoperation and infection during the follow-up period. Other risk factors for reoperation and infection were also evalulated.Aims
Methods
Previous studies on the
To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)).Aims
Methods
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods
Significant correction of an adolescent idiopathic scoliosis in the coronal plane through a posterior approach is associated with hypokyphosis. Factors such as the magnitude of the preoperative coronal curve, the use of hooks, number of levels fused, preoperative kyphosis, screw density, and rod type have all been implicated. Maintaining the normal thoracic kyphosis is important as hypokyphosis is associated with proximal junctional failure (PJF) and early onset degeneration of the spine. The aim of this study was to determine if coronal correction per se was the most relevant factor in generating hypokyphosis. A total of 95 patients (87% female) with a median age of 14 years were included in our study. Pre- and postoperative radiographs were measured and the operative data including upper instrumented vertebra (UIV), lower instrumented vertebra (LIV), metal density, and thoracic flexibility noted. Further analysis of the post-surgical coronal outcome (group 1 < 60% correction and group 2 ≥ 60%) were studied for their association with the postoperative kyphosis in the sagittal plane using univariate and multivariate logistic regression.Aims
Methods
Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed.Aims
Methods
With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety. Cite this article:
Posterior cervical wiring is commonly performed for patients with spinal instability, but has inherent risks. We report eight patients who had neurological deterioration after sublaminar or spinous process wiring of the cervical spine; four had complete injuries of the spinal cord, one had residual leg spasticity and three recovered after transient injuries. We found no relation between the degree of spinal canal encroachment and the severity of the spinal-cord injury, but in all cases neurological worsening appeared to have been caused by either sublaminar wiring or spinous process wiring which had been placed too far anteriorly. Sublaminar wiring has substantial risks and should be used only at atlantoaxial level, and then only after adequate reduction. Fluoroscopic guidance should be used when placing spinous process wires especially when the posterior spinal
Of a total of 330 patients requiring operation on a lumbar disc, 20 (6.1%) with lateral disc prolapse had a new muscle-splitting, intertransverse approach which requires minimal resection of bone. There were 16 men and 4 women with a mean age of 52 years. All had intense radicular pain, 15 had femoral radiculopathy and 19 a neurological deficit. Far lateral herniation of the disc had been confirmed by MRI. At operation, excellent access was obtained to the spinal nerve, dorsal root ganglion and the disc prolapse. The posterior primary ramus was useful in locating the spinal nerve and dorsal root ganglion during dissection of the intertransverse space. At review from six months to four years, 12 patients had excellent results with no residual pain and six had good results with mild discomfort and no functional impairment. Two had poor results. There had been neurological improvement in 17 of the 20 patients. We report a cadaver study of the
We present the results of correcting a double or triple curve
adolescent idiopathic scoliosis using a convex segmental pedicle
screw technique. We reviewed 191 patients with a mean age at surgery of 15 years
(11 to 23.3). Pedicle screws were placed at the convexity of each
curve. Concave screws were inserted at one or two cephalad levels
and two caudal levels. The mean operating time was 183 minutes (132
to 276) and the mean blood loss 0.22% of the total blood volume
(0.08% to 0.4%). Multimodal monitoring remained stable throughout
the operation. The mean hospital stay was 6.8 days (5 to 15).Aims
Patients and Methods
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods
Wrong-level surgery is a unique pitfall in spinal
surgery and is part of the wider field of wrong-site surgery. Wrong-site
surgery affects both patients and surgeons and has received much
media attention. We performed this systematic review to determine
the incidence and prevalence of wrong-level procedures in spinal
surgery and to identify effective prevention strategies. We retrieved
12 studies reporting the incidence or prevalence of wrong-site surgery
and that provided information about prevention strategies. Of these,
ten studies were performed on patients undergoing lumbar spine surgery
and two on patients undergoing lumbar, thoracic or cervical spine procedures.
A higher frequency of wrong-level surgery in lumbar procedures than
in cervical procedures was found. Only one study assessed preventative
strategies for wrong-site surgery, demonstrating that current site-verification protocols
did not prevent about one-third of the cases. The current literature
does not provide a definitive estimate of the occurrence of wrong-site
spinal surgery, and there is no published evidence to support the
effectiveness of site-verification protocols. Further prevention
strategies need to be developed to reduce the risk of wrong-site surgery.
Ventral screw osteosynthesis is a common surgical
method for treating fractures of the odontoid peg, but there is still
no consensus about the number and diameter of the screws to be used.
The purpose of this study was to develop a more accurate measurement
technique for the morphometry of the odontoid peg (dens axis) and
to provide a recommendation for ventral screw osteosynthesis. Images of the cervical spine of 44 Caucasian patients, taken
with a 64-line CT scanner, were evaluated using the measuring software
MIMICS. All measurements were performed by two independent observers.
Intraclass correlation coefficients were used to measure inter-rater
variability. The mean length of the odontoid peg was 39.76 mm ( The cross-section of the odontoid peg is not circular but slightly
elliptical, with a 10% greater diameter in the sagittal plane. In
the majority of cases (70.5%) the odontoid peg offers enough room
for two 3.5 mm cannulated cortical screws. Cite this article: