Advertisement for orthosearch.org.uk
Results 1 - 50 of 3117
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 971 - 976
1 Sep 2023
Bourget-Murray J Piroozfar S Smith C Ellison J Bansal R Sharma R Evaniew N Johnson A Powell JN

Aims. This study aims to determine difference in annual rate of early-onset (≤ 90 days) deep surgical site infection (SSI) following primary total knee arthroplasty (TKA) for osteoarthritis, and to identify risk factors that may be associated with infection. Methods. This is a retrospective population-based cohort study using prospectively collected patient-level data between 1 January 2013 and 1 March 2020. The diagnosis of deep SSI was defined as per the Centers for Disease Control/National Healthcare Safety Network criteria. The Mann-Kendall Trend test was used to detect monotonic trends in annual rates of early-onset deep SSI over time. Multiple logistic regression was used to analyze the effect of different patient, surgical, and healthcare setting factors on the risk of developing a deep SSI within 90 days from surgery for patients with complete data. We also report 90-day mortality. Results. A total of 39,038 patients underwent primary TKA for osteoarthritis during the study period. Of these, 275 patients developed a deep SSI within 90 days of surgery, representing a cumulative incidence of 0.7%. The annual infection rate did not significantly decrease over the seven-year study period (p = 0.162). Overall, 13,885 (35.5%) cases were excluded from the risk analysis due to missing data. Risk factors associated with early-onset deep SSI included male sex, American Society of Anesthesiologists grade ≥ 3, blood transfusion, acute length of stay, and surgeon volume < 30 TKAs/year. Early-onset deep SSI was not associated with increased 90-day mortality. Conclusion. This study establishes a reliable baseline infection rate for early-onset deep SSI after TKA for osteoarthritis using robust Infection Prevention and Control surveillance data, and identifies several potentially modifiable risk factors. Cite this article: Bone Joint J 2023;105-B(9):971–976


Bone & Joint Open
Vol. 3, Issue 4 | Pages 321 - 331
8 Apr 2022
Dean BJF Srikesavan C Horton R Toye F

Aims. Osteoarthritis (OA) affecting the thumb carpometacarpal joint (CMCJ) is a common painful condition. In this study, we aimed to explore clinicians’ approach to management with a particular focus on the role of specific interventions that will inform the design of future clinical trials. Methods. We interviewed a purposive sample of 24 clinicians, consisting of 12 surgeons and 12 therapists (four occupational therapists and eight physiotherapists) who managed patients with CMCJ OA. This is a qualitative study using semi-structured, online interviews. Interviews were audio-recorded, transcribed verbatim, and analyzed using thematic analysis. Results. A total of 14 themes were developed, six of which were developed relating to the clinical management of CMCJ OA: 1) A flexible ‘ladder’ approach starting with conservative treatment first; 2) The malleable role of steroid injection; 3) Surgery as an invasive and risky last resort; 4) A shared and collaborative approach; 5) Treating the whole person; and 6) Severity of life impact influences treatment. The remaining eight themes were developed relating to clinical trial barriers and facilitators: 1) We need to embrace uncertainty; 2) You are not losing out by taking part; 3) It is difficult to be neutral about certain treatments; 4) Difficult to recruit to ‘no treatment’ ; 5) Difficult to recruit to a trial comparing no surgery to surgery; 6) Patients are keen to participate in research; 7) Burden on staff and participants; and 8) A enthusiasm for a variety of potential trial arms. Conclusion. Our findings contribute to a better understanding of how clinicians manage thumb CMCJ OA in their practice settings. Our study also provides useful insights informing the design of randomized clinical trials involving steroid injections and surgery in people with thumb CMCJ OA. Cite this article: Bone Jt Open 2022;3(4):321–331


Bone & Joint Research
Vol. 11, Issue 2 | Pages 61 - 72
15 Feb 2022
Luobu Z Wang L Jiang D Liao T Luobu C Qunpei L

Aims. Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays. Results. CircSCAPER was highly expressed in OA cartilage tissues and IL-1β-induced chondrocytes. Knockdown of circSCAPER reduced IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes. Mechanistically, circSCAPER directly bound to miR-140-3p, and miR-140-3p inhibition reversed the effects of circSCAPER knockdown on IL-1β-induced chondrocytes. miR-140-3p was verified to target EZH2, and overexpression of miR-140-3p protected chondrocytes against IL-1β-induced dysfunction via targeting EZH2. Additionally, we confirmed that circSCAPER could regulate EZH2 through sponging miR-140-3p, and the circSCAPER/miR-140-3p/EZH2 axis could activate the PI3K/AKT pathway. Conclusion. CircSCAPER promoted IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes via regulating miR-140-3p/EZH2 axis, which gained a new insight into the pathogenesis of OA. Cite this article: Bone Joint Res 2022;11(2):61–72


Aims. The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral. Methods. The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype. Results. The most common phenotype was Type I-b (mild to moderate varus alignment-medial joint line; 27.1% (n = 256)), followed by Type IV-b (23.2%; n = 219). There was no significant difference in the clinical outcomes and long-term survival between the groups. In Type IV-b phenotypes, the neutrally corrected group showed higher 15-year survival compared with the unchanged-phenotype group (94.9% (95% confidence interval (CI) 92.0 to 97.8) vs 74.2% (95% CI 98.0 to 100); p = 0.020). Conclusion. Constitutional varus was confirmed in more than half of these patients. Mechanically aligned TKA can achieve consistent clinical outcomes and long-term survival, regardless of the patient’s phenotype. The neutrally corrected group had better long-term survival compared with the unchanged phenotype group. Cite this article: Bone Joint J 2024;106-B(5):460–467


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 365 - 372
15 Mar 2023
Yapp LZ Scott CEH MacDonald DJ Howie CR Simpson AHRW Clement ND

Aims. This study investigates whether primary knee arthroplasty (KA) restores health-related quality of life (HRQoL) to levels expected in the general population. Methods. This retrospective case-control study compared HRQoL data from two sources: patients undergoing primary KA in a university-teaching hospital (2013 to 2019), and the Health Survey for England (HSE; 2010 to 2012). Patient-level data from the HSE were used to represent the general population. Propensity score matching was used to balance covariates and facilitate group comparisons. A propensity score was estimated using logistic regression based upon the covariates sex, age, and BMI. Two matched cohorts with 3,029 patients each were obtained for the adjusted analyses (median age 70.3 (interquartile range (IQR) 64 to 77); number of female patients 3,233 (53.4%); median BMI 29.7 kg/m. 2. (IQR 26.5 to 33.7)). HRQoL was measured using the three-level version of the EuroQol five-dimension questionnaire (EQ-5D-3L), and summarized using the Index and EuroQol visual analogue scale (EQ-VAS) scores. Results. Patients awaiting KA had significantly lower EQ-5D-3L Index scores than the general population (median 0.620 (IQR 0.16 to 0.69) vs median 0.796 (IQR 0.69 to 1.00); p < 0.001). By one year postoperatively, the median EQ-5D-3L Index score improved significantly in the KA cohort (mean change 0.32 (SD 0.33); p < 0.001), and demonstrated no clinically relevant differences when compared to the general population (median 0.796 (IQR 0.69 to 1.00) vs median 0.796 (IQR 0.69 to 1.00)). Compared to the general population cohort, the postoperative EQ-VAS was significantly higher in the KA cohort (p < 0.001). Subgroup comparisons demonstrated that older age groups had statistically better EQ-VAS scores than matched peers in the general population. Conclusion. Patients awaiting KA for osteoarthritis had significantly poorer HRQoL than the general population. However, within one year of surgery, primary KA restored HRQoL to levels expected for the patient’s age-, BMI-, and sex-matched peers. Cite this article: Bone Joint J 2023;105-B(4):365–372


Bone & Joint Research
Vol. 5, Issue 2 | Pages 66 - 72
1 Feb 2016
Gebhart JJ Weinberg DS Bohl MS Liu RW

Objectives. Sagittal alignment of the lumbosacral spine, and specifically pelvic incidence (PI), has been implicated in the development of spine pathology, but generally ignored with regards to diseases of the hip. We aimed to determine if increased PI is correlated with higher rates of hip osteoarthritis (HOA). The effect of PI on the development of knee osteoarthritis (KOA) was used as a negative control. Methods. We studied 400 well-preserved cadaveric skeletons ranging from 50 to 79 years of age at death. Each specimen’s OA of the hip and knee were graded using a previously described method. PI was measured from standardised lateral photographs of reconstructed pelvises. Multiple regression analysis was performed to determine the relationship between age and PI with HOA and KOA. Results. The mean age was 60.2 years (standard deviation (. sd. ) 8.1), and the mean PI was 46.7° (. sd. 10.7°). Multiple regression analysis demonstrated a significant correlation between increased PI and HOA (standardised beta = 0.103, p = 0.017). There was no correlation between PI and KOA (standardised beta = 0.003, p = 0.912). Conclusion. Higher PI in the younger individual may contribute to the development of HOA in later life. Cite this article: Dr J. J. Gebhart. Relationship between pelvic incidence and osteoarthritis of the hip. Bone Joint Res 2016;5:66–72. DOI: 10.1302/2046-3758.52.2000552


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 449 - 457
1 Apr 2015
Pulikottil-Jacob R Connock M Kandala N Mistry H Grove A Freeman K Costa M Sutcliffe P Clarke A

Many different designs of total hip arthroplasty (THA) with varying performance and cost are available. The identification of those which are the most cost-effective could allow significant cost-savings. We used an established Markov model to examine the cost effectiveness of five frequently used categories of THA which differed according to bearing surface and mode of fixation, using data from the National Joint Registry for England and Wales. Kaplan–Meier analyses of rates of revision for men and women were modelled with parametric distributions. Costs of devices were provided by the NHS Supply Chain and associated costs were taken from existing studies. Lifetime costs, lifetime quality-adjusted-life-years (QALYs) and the probability of a device being cost effective at a willingness to pay £20 000/QALY were included in the models.

The differences in QALYs between different categories of implant were extremely small (<  0.0039 QALYs for men or women over the patient’s lifetime) and differences in cost were also marginal (£2500 to £3000 in the same time period). As a result, the probability of any particular device being the most cost effective was very sensitive to small, plausible changes in quality of life estimates and cost.

Our results suggest that available evidence does not support recommending a particular device on cost effectiveness grounds alone. We would recommend that the choice of prosthesis should be determined by the rate of revision, local costs and the preferences of the surgeon and patient.

Cite this article: Bone Joint J 2015;97-B:449–57.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims. Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. Methods. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators. Results. EDIL3 protein prevented chondrocyte clustering and maintained chondrocyte number and SOX9 expression in the human cartilage plug. Administration of EDIL3 protein prevented OA progression in STR/ort mice by maintaining the number of chondrocytes in the hyaline cartilage and the number of matrix-producing chondrocytes (MPCs). It reduced the degradation of aggrecan, the expression of matrix metalloproteinase (MMP)-13, the Osteoarthritis Research Society International (OARSI) score, and bone remodelling. It increased the porosity of the subchondral bone plate. Administration of an EDIL3 antibody increased the number of matrix-non-producing chondrocytes (MNCs) in cartilage and exacerbated the serum concentrations of OA-related pro-inflammatory cytokines, including monocyte chemotactic protein-3 (MCP-3), RANTES, interleukin (IL)-17A, IL-22, and GROα. Administration of β1 and β3 integrin agonists (CD98 protein) increased the expression of SOX9 in OA mice. Hence, EDIL3 might activate β1 and β3 integrins for chondroprotection. EDIL3 may also protect cartilage by attenuating the expression of IL-1β-enhanced phosphokinase proteins in chondrocytes, especially glycogen synthase kinase 3 alpha/beta (GSK-3α/β) and phospholipase C gamma 1 (PLC-γ1). Conclusion. EDIL3 has a role in maintaining the cartilage ECM and inhibiting the development of OA, making it a potential therapeutic drug for OA. Cite this article: Bone Joint Res 2023;12(12):734–746


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article: Bone Joint Res 2023;12(9):536–545


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression. Results. Tensile strain could decrease the expression of circStrn3 in chondrocytes. CircStrn3 expression was significantly decreased in human and mouse OA cartilage tissues and chondrocytes. CircStrn3 could inhibit matrix metabolism of chondrocytes through competitively ‘sponging’ miRNA-9-5p targeting Kruppel-like factor 5 (KLF5), indicating that the decrease in circStrn3 might be a protective factor in mechanical instability-induced OA. The tensile strain stimulated chondrocytes to secrete exosomal miR-9-5p. Exosomes with high miR-9-5p expression from chondrocytes could inhibit osteoblast differentiation by targeting KLF5. Intra-articular injection of exosomal miR-9-5p alleviated the progression of OA induced by destabilized medial meniscus surgery in mice. Conclusion. Taken together, these results demonstrate that reduction of circStrn3 causes an increase in miR-9-5p, which acts as a protective factor in mechanical instability-induced OA, and provides a novel mechanism of communication among joint components and a potential application for the treatment of OA. Cite this article: Bone Joint Res 2023;12(1):33–45


Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims. To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. Methods. Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. Results. Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). Conclusion. Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope. Cite this article: Bone Joint Res 2022;11(8):518–527


Bone & Joint Research
Vol. 11, Issue 6 | Pages 362 - 370
9 Jun 2022
Zhou J He Z Cui J Liao X Cao H Shibata Y Miyazaki T Zhang J

Aims. Osteoarthritis (OA) is a common degenerative joint disease. The osteocyte transcriptome is highly relevant to osteocyte biology. This study aimed to explore the osteocyte transcriptome in subchondral bone affected by OA. Methods. Gene expression profiles of OA subchondral bone were used to identify disease-relevant genes and signalling pathways. RNA-sequencing data of a bone loading model were used to identify the loading-responsive gene set. Weighted gene co-expression network analysis (WGCNA) was employed to develop the osteocyte mechanics-responsive gene signature. Results. A group of 77 persistent genes that are highly relevant to extracellular matrix (ECM) biology and bone remodelling signalling were identified in OA subchondral lesions. A loading responsive gene set, including 446 principal genes, was highly enriched in OA medial tibial plateaus compared to lateral tibial plateaus. Of this gene set, a total of 223 genes were identified as the main contributors that were strongly associated with osteocyte functions and signalling pathways, such as ECM modelling, axon guidance, Hippo, Wnt, and transforming growth factor beta (TGF-β) signalling pathways. We limited the loading-responsive genes obtained via the osteocyte transcriptome signature to identify a subgroup of genes that are highly relevant to osteocytes, as the mechanics-responsive osteocyte signature in OA. Based on WGCNA, we found that this signature was highly co-expressed and identified three clusters, including early, late, and persistently responsive genes. Conclusion. In this study, we identified the mechanics-responsive osteocyte signature in OA-lesioned subchondral bone. Cite this article: Bone Joint Res 2022;11(6):362–370


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims. Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. Methods. A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed. Results. Eight-week treadmill-walking was effective at maintaining the integrity of cartilage-subchondral bone unit and reducing the elevated systematic inflammation factors and microbiome-derived metabolites. Furthermore, 16S ribosomal ribonucleic acid (rRNA) sequencing showed disease-relevant microbial shifts in PTOA animals, characterized by the decreased abundance of phylum TM7 and the increase of phylum Fusobacteria. At the genus level, the abundance of Lactobacillus, Turicibacter, Adlercreutzia, and Cetobacterium were increased in the PTOA animals, while the increase of Adlercreutzia and Cetobacterium was weakened as a response to exercise. The correlation analysis showed that genus Lactobacillus and Adlercreutzia were correlated to the structural OA phenotypes, while phylum Fusobacteria and genus Cetobacterium may contribute to the effects of exercise on the diminishment of serological inflammatory factors. Conclusion. Exercise is effective at maintaining the integrity of cartilage-subchondral bone unit, and the exercise-induced modification of disease-relevant microbial shifts is potentially involved in the mechanisms of exercise-induced amelioration of PTOA. Cite this article: Bone Joint Res 2022;11(4):214–225


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion. The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC. Cite this article: Bone Joint Res 2024;13(4):137–148


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims. Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA. Methods. We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs. Results. During OA, there were 626, 97, 1,060, and 2,330 differentially expressed genes in articular cartilage, meniscus, synovium, and subchondral bone, respectively. Gene Ontology enrichment revealed that these genes were enriched in extracellular matrix and structure organization, ossification, neutrophil degranulation, and activation at different degrees. Through ligand-receptor pairing and proteome of OA synovial fluid, we predicted ligand-receptor interactions and constructed a crosstalk atlas of the whole joint. Several interactions were reproduced by transwell experiment in chondrocytes and synovial cells, including TNC-NT5E, TNC-SDC4, FN1-ITGA5, and FN1-NT5E. After lipopolysaccharide (LPS) or interleukin (IL)-1β stimulation, the ligand expression of chondrocytes and synovial cells was upregulated, and corresponding receptors of co-culture cells were also upregulated. Conclusion. Each tissue displayed a different expression pattern in transcriptome, demonstrating their specific roles in OA. We highlighted tissue molecular crosstalk through ligand-receptor pairs in OA pathophysiology, and generated a crosstalk atlas. Strategies to interfere with these candidate ligands and receptors may help to discover molecular targets for future OA therapy. Cite this article: Bone Joint Res 2022;11(12):862–872


Bone & Joint Open
Vol. 3, Issue 5 | Pages 441 - 447
23 May 2022
Mikkelsen M Wilson HA Gromov K Price AJ Troelsen A

Aims. Treatment of end-stage anteromedial osteoarthritis (AMOA) of the knee is commonly approached using one of two surgical strategies: medial unicompartmental knee arthroplasty (UKA) or total knee arthroplasty (TKA). In this study we aim to investigate if there is any difference in outcome for patients undergoing UKA or TKA, when treated by high-volume surgeons, in high-volume centres, using two different clinical guidelines. The two strategies are ‘UKA whenever possible’ vs TKA for all patients with AMOA. Methods. A total of 501 consecutive AMOA patients (301 UKA) operated on between 2013 to 2016 in two high-volume centres were included. Centre One employed clinical guidelines for the treatment of AMOA allowing either UKA or TKA, but encouraged UKA wherever possible. Centre Two used clinical guidelines that treated all patients with a TKA, regardless of wear pattern. TKA patients were included if they had isolated AMOA on preoperative radiographs. Data were collected from both centres’ local databases. The primary outcome measure was change in Oxford Knee Score (OKS), and the proportion of patients achieving the patient-acceptable symptom state (PASS) at one-year follow-up. The data were 1:1 propensity score matched before regression models were used to investigate potential differences. Results. The matched cohort included 400 patients (mean age 67 years (SD 9.55), 213 (53%) female, mean BMI 30.2 kg/m. 2. , 337 (84%) American Society of Anesthesiologists grade ≤ 2). We found a mean adjusted difference in change score of 3.02 points (95% confidence interval (CI) 1.41 to 4.63; p < 0.001) and a significantly larger likeliness of achieving PASS (odds ratio 3.67 (95% CI 1.73 to 8.45); p = 0.001) both in favour of the UKA strategy. Conclusion. UKA and TKA are both good strategies for treating end-stage AMOA. However, when compared as a strategy, UKA achieved larger improvements in OKS, and were more likely to reach the PASS value at one-year follow-up. Cite this article: Bone Jt Open 2022;3(5):441–447


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims. cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results. CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated joint degeneration in an ACLT mouse model. Conclusion. Hyperactive CREB1 played a critical role in OA development, and 666-15 exerted anti-IL-1β or anti-CCCP effects in vitro as well as joint-protective effects in vivo. 666-15 may therefore be used as a promising anti-OA drug. Cite this article: Bone Joint Res 2024;13(1):4–18


Bone & Joint Research
Vol. 11, Issue 9 | Pages 652 - 668
7 Sep 2022
Lv G Wang B Li L Li Y Li X He H Kuang L

Aims. Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Methods. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot. Results. DC-exo inhibited macrophage autophagy (p = 0.002) and promoted M1 macrophage polarization (p = 0.002). DC-exo at 20 μg/ml induced collagen degradation (p < 0.001) and inflammatory cell infiltration (p = 0.023) in rats. OANCT was elevated in DC (p < 0.001) and in cartilage tissues of OA patients (p < 0.001), and positively correlated with patients’ Kellgren-Lawrence grade (p < 0.001). PIK3R5 was increased in DC-exo-treated cartilage tissues (p < 0.001), and OANCT bound to fat mass and obesity-associated protein (FTO) (p < 0.001). FTO bound to PIK3R5 (p < 0.001) to inhibit the stability of PIK3R5 messenger RNA (mRNA) (p < 0.001) and disrupt the PI3K/AKT/mTOR pathway (p < 0.001). Conclusion. Exosomal OANCT from DC could bind to FTO protein, thereby maintaining the mRNA stability of PIK3R5, further activating the PI3K/AKT/mTOR pathway to exacerbate OA. Cite this article: Bone Joint Res 2022;11(9):652–668


Bone & Joint Open
Vol. 4, Issue 3 | Pages 210 - 218
28 Mar 2023
Searle HKC Rahman A Desai AP Mellon SJ Murray DW

Aims. To assess the incidence of radiological lateral osteoarthritis (OA) at 15 years after medial unicompartmental knee arthroplasty (UKA) and assess the relationship of lateral OA with symptoms and patient characteristics. Methods. Cemented Phase 3 medial Oxford UKA implanted by two surgeons since 1998 for the recommended indications were prospectively followed. A 15-year cumulative revision rate for lateral OA of 5% for this series was previously reported. A total of 163 unrevised knees with 15-year (SD 1) anterior-posterior knee radiographs were studied. Lateral joint space width (JSW. L. ) was measured and severity of lateral OA was classified as: nil/mild, moderate, and severe. Preoperative and 15-year Oxford Knee Scores (OKS) and American Knee Society Scores were determined. The effect of age, sex, BMI, and intraoperative findings was analyzed. Statistical analysis included one-way analysis of variance and Kruskal-Wallis H test, with significance set at 5%. Results. The mean age was 80.6 years (SD 8.3), with 84 females and 79 males. The mean JSW. L. was 5.6 mm (SD 1.4), and was not significantly related to age, sex, or intraoperative findings. Those with BMI > 40 kg/m. 2. had a smaller JSW. L. than those with a ‘normal’ BMI (p = 0.039). The incidence of severe and moderate lateral OA were both 4.9%. Overall, 2/142 (1.4%) of those with nil/mild lateral OA, 1/8 (13%) with moderate, and 2/8 (25%) with severe subsequently had a revision. Those with severe (mean OKS 35.6 (SD 9.3)) and moderate OA (mean OKS 35.8 (SD 10.5)) tended to have worse outcome scores than those with nil/mild (mean OKS 39.5 (SD 9.2)) but the difference was only significant for OKS-Function (p = 0.044). Conclusion. This study showed that the rate of having severe or moderate radiological lateral OA at 15 years after medial UKA was low (both 4.9%). Although patients with severe or moderate lateral OA had a lower OKS than those with nil/mild OA, their mean scores (OKS 36) would be classified as good. Cite this article: Bone Jt Open 2023;4(3):210–218


Bone & Joint Research
Vol. 12, Issue 2 | Pages 121 - 132
1 Feb 2023
Mo H Wang Z He Z Wan J Lu R Wang C Chen A Cheng P

Aims. Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. Methods. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry. Results. In chondrocytes, knockdown of Peli1 produced anti-inflammatory and anti-apoptotic effects by targeting the TLR and NF-κB signalling pathways. We found that in macrophages, knockdown of Peli1 can inhibit M1-type polarization of macrophages. In addition, the corresponding conditioned culture medium of macrophages applied to chondrocytes can also produce an anti-apoptotic effect. During in vivo experiments, the results have also shown that knockdown Peli1 reduces cartilage destruction and synovial inflammation. Conclusion. Knockdown of Peli1 has a therapeutic effect on OA, which therefore makes it a potential therapeutic target for OA. Cite this article: Bone Joint Res 2023;12(2):121–132


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Open
Vol. 3, Issue 6 | Pages 463 - 469
7 Jun 2022
Vetter P Magosch P Habermeyer P

Aims. The aim of this study was to determine whether there is a correlation between the grade of humeral osteoarthritis (OA) and the severity of glenoid morphology according to Walch. We hypothesized that there would be a correlation. Methods. Overal, 143 shoulders in 135 patients (73 females, 62 males) undergoing shoulder arthroplasty surgery for primary glenohumeral OA were included consecutively. Mean age was 69.3 years (47 to 85). Humeral head (HH), osteophyte length (OL), and morphology (transverse decentering of the apex, transverse, or coronal asphericity) on radiographs were correlated to the glenoid morphology according to Walch (A1, A2, B1, B2, B3), glenoid retroversion, and humeral subluxation on CT images. Results. Increased humeral OL correlated with a higher grade of glenoid morphology (A1-A2-B1-B2-B3) according to Walch (r = 0.672; p < 0.0001). It also correlated with glenoid retroversion (r = 0.707; p < 0.0001), and posterior humeral subluxation (r = 0.452; p < 0.0001). A higher humeral OL (odds ratio (OR) 1.17; 95% confidence interval (CI) 1.03 to 1.32; p = 0.013), posterior humeral subluxation (OR 1.11; 95% CI 1.01 to 1.22; p = 0.031), and glenoid retroversion (OR 1.48; 95% CI 1.30 to 1.68; p < 0.001) were independent factors for a higher glenoid morphology. More specifically, a humeral OL of ≥ 13 mm was indicative of eccentric glenoid types B2 and B3 (OR 14.20; 95% CI 5.96 to 33.85). Presence of an aspherical HH in the coronal plane was suggestive of glenoid types B2 and B3 (OR 3.34; 95% CI 1.67 to 6.68). Conclusion. The criteria of humeral OL and HH morphology are associated with increasing glenoid retroversion, posterior humeral subluxation, and eccentric glenoid wear. Therefore, humeral radiological parameters might hint at the morphology on the glenoid side. Cite this article: Bone Jt Open 2022;3(6):463–469


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results. A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion. This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions. Cite this article: Bone Joint Res 2024;13(7):362–371


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1140 - 1148
1 Nov 2023
Liukkonen R Vaajala M Mattila VM Reito A

Aims. The aim of this study was to report the pooled prevalence of post-traumatic osteoarthritis (PTOA) and examine whether the risk of developing PTOA after anterior cruciate ligament (ACL) injury has decreased in recent decades. Methods. The PubMed and Web of Science databases were searched from 1 January 1980 to 11 May 2022. Patient series, observational studies, and clinical trials having reported the prevalence of radiologically confirmed PTOA after ACL injury, with at least a ten-year follow-up, were included. All studies were analyzed simultaneously, and separate analyses of the operative and nonoperative knees were performed. The prevalence of PTOA was calculated separately for each study, and pooled prevalence was reported with 95% confidence intervals (CIs) using either a fixed or random effects model. To examine the effect of the year of injury on the prevalence, a logit transformed meta-regression analysis was used with a maximum-likelihood estimator. Results from meta-regression analyses were reported with the unstandardized coefficient (β). Results. The pooled prevalence of PTOA was 37.9% (95% CI 32.1 to 44) for operatively treated ACL injuries with a median follow-up of 14.6 years (interquartile range (IQR) 10.6 to 16.7). For nonoperatively treated ACL injuries, the prevalence was 40.5% (95% CI 28.9 to 53.3), with a median of follow-up of 15 years (IQR 11.7 to 20.0). The association between the year of operation and the prevalence of PTOA was weak and imprecise and not related to the choice of treatment (operative β -0.038 (95% CI -0.076 to 0.000) and nonoperative β -0.011 (95% CI -0.101 to 0.079)). Conclusion. The initial injury, irrespective of management, has, by the balance of probability, resulted in PTOA within 20 years. In addition, the prevalence of PTOA has only slightly decreased during past decades. Therefore, further research is warranted to develop strategies to prevent the development of PTOA after ACL injuries. Cite this article: Bone Joint J 2023;105-B(11):1140–1148


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims. This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry. Methods. In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups. Results. The incidences of whole and lower LL asymmetries were 40%, 62.5%, 66.7%, and 26.1%, and 21.7%, 20.8%, 55.6%, and 8.7% in the Crowe I, II/III, and IV, and PHOA groups, respectively. The incidence of tibial length asymmetry was significantly higher in the Crowe IV group (44.4%) than that in the PHOA group (4.4%). In all, 50% of patients with DDH-OA with femoral length GT and LT asymmetries had lower LL asymmetry, and 75% had whole LL asymmetry. The incidences of lower and whole LL asymmetries were 20% and 42.9%, respectively, even in the absence of femoral length GT and LT asymmetries. Conclusion. Overall, 43% of patients with unilateral DDH-OA without femoral length asymmetry had whole LL asymmetry of ≥ 5 mm. Thus, both the femur length and whole LL should be measured to accurately assess LL discrepancy in patients with unilateral DDH-OA. Cite this article: Bone Jt Open 2024;5(2):79–86


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims. This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA). Methods. Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model. Results. We discovered for the first time that MCL was substantially enriched in the synovial fluid of OA patients and promoted the release of inflammatory cytokines from FLSs through MCL phagocytosis. Through LC‒MS, ANT3 was identified and determined to be significantly upregulated in MCL and OA-FLSs, corresponding to impaired mitochondrial function and cell viability in OA-FLSs. Mitochondrial homeostasis was restored by ANT3 suppression, thereby alleviating synovial inflammation. Furthermore, elevated ANT3 levels inhibited ERK phosphorylation. Specifically, silencing ANT3 prevented inhibition of ERK phosphorylation and significantly reduced the elevation of reactive oxygen species (ROS) and JC1 membrane potential in MCL-induced synovial inflammation. Conclusion. This study revealed the important roles of MCL and ANT3 in FLS mitochondria. Silencing ANT3 rescued ERK phosphorylation, thereby restoring mitochondrial homeostasis in FLSs and alleviating synovitis and OA development, offering a potential target for treating synovitis and preventing early-stage OA. Cite this article: Bone Joint Res 2023;12(4):274–284


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 25 - 31
1 May 2024
Yasunaga Y Oshima S Shoji T Adachi N Ochi M

Aims. The objective of this study was to present the outcomes of rotational acetabular osteotomy (RAO) over a 30-year period for osteoarthritis (OA) secondary to dysplasia of the hip in pre- or early-stage OA. Methods. Between September 1987 and December 1994, we provided treatment to 47 patients (55 hips) with RAO for the management of pre- or early-stage OA due to developmental hip dysplasia. Of those, eight patients (11 hips) with pre-OA (follow-up rate 79%) and 27 patients (32 hips) with early-stage OA (follow-up rate 78%), totalling 35 patients (43 hips) (follow-up rate 78%), were available at a minimum of 28 years after surgery. Results. In the pre-OA group, the mean Merle d'Aubigné score improved significantly from 14.5 points (SD 0.7) preoperatively to 17.4 points at final follow-up (SD 1.2; p = 0.004) and in the early-stage group, the mean score did not improve significantly from 14.0 (SD 0.3) to 14.6 (SD 2.4; p = 0.280). Radiologically, the centre-edge angle, acetabular roof angle, and head lateralization index were significantly improved postoperatively in both groups. Radiological progression of OA was observed in two patients (two hips) in the pre-OA group and 17 patients (18 hips) in the early-stage group. Kaplan-Meier survival analysis, with radiological progression of OA as the primary outcome, projected a 30-year survival rate of 81.8% (95% confidence interval (CI) 0.59 to 1.00) for the pre-OA group and 42.2% (95% CI 0.244 to 0.600) for the early-stage group. In all cases, the overall survival rate stood at 51.5% (95% CI 0.365 to 0.674) over a 30-year period, and when the endpoint was conversion to total hip arthroplasty, the survival rate was 74.0% (95% CI 0.608 to 0.873). Conclusion. For younger patients with pre-OA, joint preservation of over 30 years can be expected after RAO. Cite this article: Bone Joint J 2024;106-B(5 Supple B):25–31


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims. Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2. -/-. ) display accelerated bone growth. Methods. We examined vulnerability of Socs2. -/-. mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. Results. We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2. -/-. in comparison with WT. Histological examination of WT and Socs2. -/-. knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2. -/-. mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2. -/-. , in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. Conclusion. Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162–170


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 121 - 129
1 Mar 2024
Orce Rodríguez A Smith PN Johnson P O'Sullivan M Holder C Shimmin A

Aims. In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA). Methods. Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups. Results. From six months postoperatively onwards, patients aged ≥ 75 years undergoing primary THA with primary diagnosis of OA have a lower risk of all-cause revision with collared cementless components than with a polished tapered cemented component (HR 0.78 (95% confidence interval 0.64 to 0.96); p = 0.018). There is no difference in revision rate prior to six months. Conclusion. Patients aged ≥ 75 years with a primary diagnosis of OA have a significantly lower rate of revision with the most common collared cementless femoral component, compared with the most common polished tapered cemented components from six months postoperatively onwards. The lower revision rate is largely due to a reduction in revisions for fracture and infection. Cite this article: Bone Joint J 2024;106-B(3 Supple A):121–129


Bone & Joint Research
Vol. 11, Issue 1 | Pages 12 - 22
13 Jan 2022
Zhang F Rao S Baranova A

Aims. Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Methods. Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases. Results. MDD has a significant genetic correlation with OA (r. g. = 0.29) and the two diseases share a considerable proportion of causal variants. Mendelian randomization analysis indicates that genetic liability to MDD has a causal effect on OA (b. xy. = 0.24) and genetic liability to OA conferred a causal effect on MDD (b. xy. = 0.20). Cross-trait meta-analyses identified 29 shared genomic loci between MDD and OA. Together with fine-mapping of transcriptome-wide association signals, our results suggest that Estrogen Receptor 1 (ESR1), SRY-Box Transcription Factor 5 (SOX5), and Glutathione Peroxidase 1 (GPX1) may have therapeutic implications for both MDD and OA. Conclusion. The study reveals substantial shared genetic liability between MDD and OA, which may confer risk for one another. Our findings provide a novel insight into phenotypic relationships between MDD and OA. Cite this article: Bone Joint Res 2022;11(1):12–22


Aims. This study aimed, through bioinformatics analysis, to identify the potential diagnostic markers of osteoarthritis, and analyze the role of immune infiltration in synovial tissue. Methods. The gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by R software. Functional enrichment analyses were performed and protein-protein interaction networks (PPI) were constructed. Then the hub genes were screened. Biomarkers with high value for the diagnosis of early osteoarthritis (OA) were validated by GEO datasets. Finally, the CIBERSORT algorithm was used to evaluate the immune infiltration between early-stage OA and end-stage OA, and the correlation between the diagnostic marker and infiltrating immune cells was analyzed. Results. A total of 88 DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that DEGs were significantly enriched in leucocyte migration and interleukin (IL)-17 signalling pathways. Disease ontology (DO) indicated that DEGs were mostly enriched in rheumatoid arthritis. Six hub genes including FosB proto-oncogene, AP-1 transcription factor subunit (FOSB); C-X-C motif chemokine ligand 2 (CXCL2); CXCL8; IL-6; Jun proto-oncogene, AP-1 transcription factor subunit (JUN); and Activating transcription factor 3 (ATF3) were identified and verified by GEO datasets. ATF3 (area under the curve = 0.975) turned out to be a potential biomarker for the diagnosis of early OA. Several infiltrating immune cells varied significantly between early-stage OA and end-stage OA, such as resting NK cells (p = 0.016), resting dendritic cells (p = 0.043), and plasma cells (p = 0.043). Additionally, ATF3 was significantly correlated with resting NK cells (p = 0.034), resting dendritic cells (p = 0.026), and regulatory T cells (Tregs, p = 0.018). Conclusion. ATF3 may be a potential diagnostic marker for early diagnosis and treatment of OA, and immune cell infiltration provides new perspectives for understanding the mechanism during OA progression. Cite this article: Bone Joint Res 2022;11(9):679–689


Bone & Joint Research
Vol. 11, Issue 8 | Pages 594 - 607
17 Aug 2022
Zhou Y Li J Xu F Ji E Wang C Pan Z

Aims. Osteoarthritis (OA) is a common degenerative joint disease characterized by chronic inflammatory articular cartilage degradation. Long noncoding RNAs (lncRNAs) have been previously indicated to play an important role in inflammation-related diseases. Herein, the current study set out to explore the involvement of lncRNA H19 in OA. Methods. Firstly, OA mouse models and interleukin (IL)-1β-induced mouse chondrocytes were established. Expression patterns of IL-38 were determined in the synovial fluid and cartilage tissues from OA patients. Furthermore, the targeting relationship between lncRNA H19, tumour protein p53 (TP53), and IL-38 was determined by means of dual-luciferase reporter gene, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Subsequent to gain- and loss-of-function assays, the levels of cartilage damage and proinflammatory factors were further detected using safranin O-fast green staining and enzyme-linked immunosorbent assay (ELISA) in vivo, respectively, while chondrocyte apoptosis was measured using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) in vitro. Results. IL-38 was highly expressed in lentivirus vector-mediated OA mice. Meanwhile, injection of exogenous IL-38 to OA mice alleviated the cartilage damage, and reduced the levels of proinflammatory factors and chondrocyte apoptosis. TP53 was responsible for lncRNA H19-mediated upregulation of IL-38. Furthermore, it was found that the anti-inflammatory effects of IL-38 were achieved by its binding with the IL-36 receptor (IL-36R). Overexpression of H19 reduced the expression of inflammatory factors and chondrocyte apoptosis, which was abrogated by knockdown of IL-38 or TP53. Conclusion. Collectively, our findings evidenced that upregulation of lncRNA H19 attenuates inflammation and ameliorates cartilage damage and chondrocyte apoptosis in OA by upregulating TP53, IL-38, and by activating IL-36R. Cite this article: Bone Joint Res 2022;11(8):594–607


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 331 - 340
1 Mar 2022
Strahl A Kazim MA Kattwinkel N Hauskeller W Moritz S Arlt S Niemeier A

Aims. The aim of this study was to determine whether total hip arthroplasty (THA) for chronic hip pain due to unilateral primary osteoarthritis (OA) has a beneficial effect on cognitive performance. Methods. A prospective cohort study was conducted with 101 patients with end-stage hip OA scheduled for THA (mean age 67.4 years (SD 9.5), 51.5% female (n = 52)). Patients were assessed at baseline as well as after three and months. Primary outcome was cognitive performance measured by d2 Test of Attention at six months, Trail Making Test (TMT), FAS-test, Rivermead Behavioural Memory Test (RBMT; story recall subtest), and Rey-Osterrieth Complex Figure Test (ROCF). The improvement of cognitive performance was analyzed using repeated measures analysis of variance. Results. At six months, there was significant improvement in attention, working speed and concentration (d2-test; p < 0.001), visual construction and visual memory (ROCF; p < 0.001), semantic memory (FAS-test; p = 0.009), verbal episodic memory (RBMT; immediate recall p = 0.023, delayed recall p = 0.026), as well as pain (p < 0.001) with small to large effect sizes. Attention, concentration, and visual as well as verbal episodic memory improved significantly with medium effect sizes over η. 2. partial. = 0.06. In these cognitive domains the within-group difference exceeded the minimum clinically important difference. Conclusion. THA is associated with clinically relevant postoperative improvement in the cognitive functions of attention, concentration, and memory. These data support the concept of a broad interaction of arthroplasty with central nervous system function. Cite this article: Bone Joint J 2022;104-B(3):331–340


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 783 - 791
1 Aug 2024
Tanaka S Fujii M Kawano S Ueno M Nagamine S Mawatari M

Aims. The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia. Methods. We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure. Results. This study included 127 patients (137 hips). Median follow-up period was ten years (IQR 6 to 15). The median mHHS improved from 59 (IQR 52 to 70) preoperatively to 90 (IQR 73 to 96) at the latest follow-up (p < 0.001). The survival rate was 90% (95% CI 82 to 95) at ten years, decreasing to 21% (95% CI 7 to 48) at 20 years. Fair joint congruity on preoperative hip abduction radiographs and a decreased postoperative anterior wall index (AWI) were identified as independent risk factors for failure. The survival rate for the 42 hips with good preoperative joint congruity and a postoperative AWI ≥ 0.30 was 100% at ten years, and remained at 83% (95% CI 38 to 98) at 20 years. Conclusion. Although the overall clinical outcomes of TOA in patients with advanced osteoarthritis are suboptimal, favourable results can be achieved in selected cases with good preoperative joint congruity and adequate postoperative anterior acetabular coverage. Cite this article: Bone Joint J 2024;106-B(8):783–791


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims. Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods. OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results. Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion. Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1303 - 1313
1 Dec 2023
Trammell AP Hao KA Hones KM Wright JO Wright TW Vasilopoulos T Schoch BS King JJ

Aims. Both anatomical and reverse total shoulder arthroplasty (aTSA and rTSA) provide functional improvements. A reported benefit of aTSA is better range of motion (ROM). However, it is not clear which procedure provides better outcomes in patients with limited foward elevation (FE). The aim of this study was to compare the outcome of aTSA and rTSA in patients with glenohumeral osteoarthritis (OA), an intact rotator cuff, and limited FE. Methods. This was a retrospective review of a single institution’s prospectively collected shoulder arthroplasty database for TSAs undertaken between 2007 and 2020. A total of 344 aTSAs and 163 rTSAs, which were performed in patients with OA and an intact rotator cuff with a minimum follow-up of two years, were included. Using the definition of preoperative stiffness as passive FE ≤ 105°, three cohorts were matched 1:1 by age, sex, and follow-up: stiff aTSAs (85) to non-stiff aTSAs (85); stiff rTSAs (74) to non-stiff rTSAs (74); and stiff rTSAs (64) to stiff aTSAs (64). We the compared ROMs, outcome scores, and complication and revision rates. Results. Compared with non-stiff aTSAs, stiff aTSAs had poorer passive FE and active external rotation (ER), whereas there were no significant postoperative differences between stiff rTSAs and non-stiff rTSAs. There were no significant differences in preoperative function when comparing stiff aTSAs with stiff rTSAs. However, stiff rTSAs had significantly greater postoperative active and passive FE (p = 0.001 and 0.004, respectively), and active abduction (p = 0.001) compared with stiff aTSAs. The outcome scores were significantly more favourable in stiff rTSAs for the Shoulder Pain and Disability Index, Simple Shoulder Test, American Shoulder and Elbow Surgeons score, University of California, Los Angeles score, and the Constant score, compared with stiff aTSAs. When comparing the proportion of stiff aTSAs versus stiff rTSAs that exceeded the minimal clinically important difference and substantial clinical benefit, stiff rTSAs achieved both at greater rates for all measurements except active ER. The complication rate did not significantly differ between stiff aTSAs and stiff rTSAs, but there was a significantly higher rate of revision surgery in stiff aTSAs (p = 0.007). Conclusion. Postoperative overhead ROM, outcome scores, and rates of revision surgery favour the use of a rTSA rather than aTSA in patients with glenohumeral OA, an intact rotator cuff and limited FE, with similar rotational ROM in these two groups. Cite this article: Bone Joint J 2023;105-B(12):1303–1313


Bone & Joint Open
Vol. 2, Issue 3 | Pages 141 - 149
1 Mar 2021
Saab M Chick G

Aims. The objective of this systematic review was to describe trapeziectomy outcomes and complications in the context of osteoarthritis of the base of the thumb after a five-year minimum follow-up. Methods. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to guide study design, and 267 full-text articles were assessed for eligibility. After exclusion criteria application, 22 studies were included, involving 728 patients and 823 trapeziectomies. Outcomes included pre- and postoperative clinical and radiological characteristics. Complications and revisions were recorded. Results. All the studies reported good results regarding pain and range of motion at the last follow-up of 8.3 years (5 to 22); the mean satisfaction rate was 91% (84% to 100%). It was difficult to assess the impact on metacarpophalangeal joint motion in extension with contrary results. The key pinch returned to its preoperative values, whereas tip pinch showed a modest improvement (+14%), with a mild improvement found in grip strength (+25%) at the last follow-up. The mean progressive trapezial collapse was 48% (0% to 85%) and was not correlated with pain, grip strength, or satisfaction. The most represented complications were linked to tendons or nerves affected during additional procedures to stabilize the joint (11.6%; n = 56). Mechanical complications included symptomatic scapho-M1 impingement (3.1%; n = 15/580), leading to nine surgical revisions out of 581 trapeziectomies. Meta-analysis was not possible due to study heterogeneity and limited data. Conclusion. After a minimum five-year follow-up, trapeziectomy achieved high patient satisfaction and pain relief. However, strength seemed to be deteriorating with detrimental consequences, but this did not correlate with trapezial collapse. The issues related to underestimating mechanical complications and varying degrees of success should be highlighted in the information given to patients. Evidence-based analyses should help the surgeon in their decision-making. Cite this article: Bone Jt Open 2021;2(3):141–149


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122–133


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1060 - 1066
1 Sep 2022
Jin X Gallego Luxan B Hanly M Pratt NL Harris I de Steiger R Graves SE Jorm L

Aims. The aim of this study was to estimate the 90-day periprosthetic joint infection (PJI) rates following total knee arthroplasty (TKA) and total hip arthroplasty (THA) for osteoarthritis (OA). Methods. This was a data linkage study using the New South Wales (NSW) Admitted Patient Data Collection (APDC) and the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR), which collect data from all public and private hospitals in NSW, Australia. Patients who underwent a TKA or THA for OA between 1 January 2002 and 31 December 2017 were included. The main outcome measures were 90-day incidence rates of hospital readmission for: revision arthroplasty for PJI as recorded in the AOANJRR; conservative definition of PJI, defined by T84.5, the PJI diagnosis code in the APDC; and extended definition of PJI, defined by the presence of either T84.5, or combinations of diagnosis and procedure code groups derived from recursive binary partitioning in the APDC. Results. The mean 90-day revision rate for infection was 0.1% (0.1% to 0.2%) for TKA and 0.3% (0.1% to 0.5%) for THA. The mean 90-day PJI rates defined by T84.5 were 1.3% (1.1% to 1.7%) for TKA and 1.1% (0.8% to 1.3%) for THA. The mean 90-day PJI rates using the extended definition were 1.9% (1.5% to 2.2%) and 1.5% (1.3% to 1.7%) following TKA and THA, respectively. Conclusion. When reporting the revision arthroplasty for infection, the AOANJRR substantially underestimates the rate of PJI at 90 days. Using combinations of infection codes and PJI-related surgical procedure codes in linked hospital administrative databases could be an alternative way to monitor PJI rates. Cite this article: Bone Joint J 2022;104-B(9):1060–1066


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods. Cite this article: Bone Joint Res 2021;10(2):134–136


Aims. The use of high tibial osteotomy (HTO) to delay total knee arthroplasty (TKA) in young patients with osteoarthritis (OA) and constitutional deformity remains debated. The aim of this study was to compare the long-term outcomes of TKA after HTO compared to TKA without HTO, using the time from the index OA surgery as reference (HTO for the study group, TKA for the control group). Methods. This was a case-control study of consecutive patients receiving a posterior-stabilized TKA for OA between 1996 and 2010 with previous HTO. A total of 73 TKAs after HTO with minimum ten years’ follow-up were included. Cases were matched with a TKA without previous HTO for age at the time of the HTO. All revisions were recorded. Kaplan-Meier survivorship analysis was performed using revision of metal component as the endpoint. The Knee Society Score, range of motion, and patient satisfaction were assessed. Results. Mean follow-up was 13 years (SD 3) after TKA in both groups. The 20-year Kaplan-Meier survival estimate was 98.6% in TKA post-HTO group (HTO as timing reference) and 81.4% in control group (TKA as timing reference) (p = 0.030). There was no significant difference in clinical outcomes, radiological outcomes, and complications at the last follow-up. Conclusion. At the same delay from index surgery (HTO or TKA), a strategy of HTO followed by TKA had superior knee survivorship compared to early TKA at long term in young patients. Level of evidence: III. Cite this article: Bone Jt Open 2023;4(2):62–71


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Bone & Joint Open
Vol. 2, Issue 1 | Pages 40 - 47
1 Jan 2021
Kivle K Lindland ES Mjaaland KE Svenningsen S Nordsletten L

Aims. The gluteus minimus (GMin) and gluteus medius (GMed) have unique structural and functional segments that may be affected to varying degrees, by end-stage osteoarthritis (OA) and normal ageing. We used data from patients with end-stage OA and matched healthy controls to 1) quantify the atrophy of the GMin and GMed in the two groups and 2) describe the distinct patterns of the fatty infiltration in the different segments of the GMin and GMed in the two groups. Methods. A total of 39 patients with end-stage OA and 12 age- and sex frequency-matched healthy controls were prospectively enrolled in the study. Fatty infiltration within the different segments of the GMin and the GMed was assessed on MRI according to the semiquantitative classification system of Goutallier and normalized cross-sectional areas were measured. Results. The GMin was smaller in the OA-group (p < 0.001) compared to the control group, but there was no group difference in the size of the GMed (p = 0.101). Higher levels of fatty infiltration were identified in the anterior segment of the GMin (p = 0.006) and the anterior (p = 0.006) and middle (p = 0.047) segments of the GMed in the OA group. All subjects in the control group had fatty infiltration of the anterior segment of the GMin, but all except one had no fatty infiltration in the entire GMed. Conclusion. End-stage OA was associated with significant atrophy of the GMin and higher levels of fatty infiltration, particularly in the anterior segments of the GMin and GMed. Minor fatty infiltration of the anterior segment of GMin appears to be a normal part of ageing. Our study has demonstrated different patterns of atrophy and fatty infiltration between patients with end-stage OA and healthy matched peers. Cite this article: Bone Jt Open 2021;2(1):40–47


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims. Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Methods. Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. Results. Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. Conclusion. This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10–21


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 600 - 605
1 May 2020
Parker S Riley N Dean B

Aims. Base of thumb osteoarthritis (BTOA) is a common age-related disease which has a significant negative impact upon quality of life. Our aim was to assess current UK practice in secondary care with regard to the nature of non-surgical treatments, the surgical procedures most commonly performed, and factors influencing the surgical decision-making process. Methods. Ten consecutive patients undergoing surgery for BTOA between March 2017 and May 2019 were prospectively identified in 15 UK centres. Demographic details, duration of symptoms, radiological grade, non-surgical management strategies, and surgery conducted were recorded. A supplementary consultant questionnaire consisting of four multiple-choice-questions (MCQ) based on hypothetical clinical scenarios was distributed. Results. A total of 150 patients were identified with a mean age of 64 years (SD 9), comprising 119 females and 31 males. Median duration of symptoms prior to surgery was 24 months (Interquartile range (IQR) 12 to 40). Hand therapy was used in 67 patients (45%), splints in 80 (53%), and 121 patients (81%) received one or more intra-articular injections, of which 81 (67%) were image-guided (14 (12%) ultrasound and 67 (55%) fluoroscopic). Only 48 patients (32%) received all three non-surgical treatments. Simple trapeziectomy (79 patients) and trapeziectomy with ligament reconstruction and/or tendon interposition (69 patients) were the most commonly performed operations. One patient was treated with arthrodesis, and one with arthroplasty. The supplementary questionnaire revealed that no specific patient or disease characteristics significantly influenced the type of surgery undertaken. Conclusion. We found considerable variation in practice of both non-surgical and surgical management of BTOA. The proportion of patients exhausting non-surgical strategies before being offered surgery is low. Surgeons tend to favour a single type of surgery irrespective of patient or disease characteristics. Cite this article: Bone Joint J 2020;102-B(5):600–605


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1472 - 1478
1 Sep 2021
Shoji T Saka H Inoue T Kato Y Fujiwara Y Yamasaki T Yasunaga Y Adachi N

Aims. Rotational acetabular osteotomy (RAO) has been reported to be effective in improving symptoms and preventing osteoarthritis (OA) progression in patients with mild to severe develomental dysplasia of the hip (DDH). However, some patients develop secondary OA even when the preoperative joint space is normal; determining who will progress to OA is difficult. We evaluated whether the preoperative cartilage condition may predict OA progression following surgery using T2 mapping MRI. Methods. We reviewed 61 hips with early-stage OA in 61 patients who underwent RAO for DDH. They underwent preoperative and five-year postoperative radiological analysis of the hip. Those with a joint space narrowing of more than 1 mm were considered to have 'OA progression'. Preoperative assessment of articular cartilage was also performed using 3T MRI with the T2 mapping technique. The region of interest was defined as the weightbearing portion of the acetabulum and femoral head. Results. There were 16 patients with postoperative OA progression. The T2 values of the centre to the anterolateral region of the acetabulum and femoral head in the OA progression cases were significantly higher than those in patients without OA progression. The preoperative T2 values in those regions were positively correlated with the narrowed joint space width. The receiver operating characteristic analysis revealed that the T2 value of the central portion in the acetabulum provided excellent discrimination, with OA progression patients having an area under the curve of 0.858. Furthermore, logistic regression analysis showed T2 values of the centre to the acetabulum’s anterolateral portion as independent predictors of subsequent OA progression (p < 0.001). Conclusion. This was the first study to evaluate the relationship between intra-articular degeneration using T2 mapping MRI and postoperative OA progression. Our findings suggest that preoperative T2 values of the hip can be better prognostic factors for OA progression than radiological measures following RAO. Cite this article: Bone Joint J 2021;103-B(9):1472–1478