Advertisement for orthosearch.org.uk
Results 1 - 48 of 48
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 20 - 26
1 Jul 2020
Romero J Wach A Silberberg S Chiu Y Westrich G Wright TM Padgett DE

Aims. This combined clinical and in vitro study aimed to determine the incidence of liner malseating in modular dual mobility (MDM) constructs in primary total hip arthroplasties (THAs) from a large volume arthroplasty centre, and determine whether malseating increases the potential for fretting and corrosion at the modular metal interface in malseated MDM constructs using a simulated corrosion chamber. Methods. For the clinical arm of the study, observers independently reviewed postoperative radiographs of 551 primary THAs using MDM constructs from a single manufacturer over a three-year period, to identify the incidence of MDM liner-shell malseating. Multivariable logistic regression analysis was performed to identify risk factors including age, sex, body mass index (BMI), cup design, cup size, and the MDM case volume of the surgeon. For the in vitro arm, six pristine MDM implants with cobalt-chrome liners were tested in a simulated corrosion chamber. Three were well-seated and three were malseated with 6° of canting. The liner-shell couples underwent cyclic loading of increasing magnitudes. Fretting current was measured throughout testing and the onset of fretting load was determined by analyzing the increase in average current. Results. The radiological review identified that 32 of 551 MDM liners (5.8%) were malseated. Malseating was noted in all of the three different cup designs. The incidence of malseating was significantly higher in low-volume MDM surgeons than high-volume MDM surgeons (p < 0.001). Pristine well-seated liners showed significantly lower fretting current values at all peak loads greater than 800 N (p < 0.044). Malseated liner-shell couples had lower fretting onset loads at 2,400 N. Conclusion. MDM malseating remains an issue that can occur in at least one in 20 patients at a high-volume arthroplasty centre. The onset of fretting and increased fretting current throughout loading cycles suggests susceptibility to corrosion when this occurs. These results support the hypothesis that malseated liners may be at risk for fretting corrosion. Clinicians should be aware of this phenomenon. Cite this article: Bone Joint J 2020;102-B(7 Supple B):20–26


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 386 - 389
1 Apr 2019
Hampton C Weitzler L Baral E Wright TM Bostrom MPG

Aims. The aim of this study was to evaluate fretting and corrosion in retrieved oxidized zirconium (OxZr; OXINIUM, Smith & Nephew, Memphis, Tennessee) femoral heads and compare the results with those from a matched cohort of cobalt-chromium (CoCr) femoral heads. Patients and Methods. A total of 28 OxZr femoral heads were retrieved during revision total hip arthroplasty (THA) and matched to 28 retrieved CoCr heads according to patient demographics. The mean age at index was 56 years (46 to 83) in the OxZr group and 70 years (46 to 92) in the CoCr group. Fretting and corrosion scores of the female taper of the heads were measured according to the modified Goldberg scoring method. Results. The OxZr-retrieved femoral heads showed significantly lower mean corrosion scores than the CoCr heads (1.3 (1 to 2.75) vs 2.1 (1 to 4); p < 0.01). Mean fretting scores were also significantly lower in the OxZr cohort when compared with the CoCr cohort (1.3 (1 to 2) vs 1.5 (1 to 2.25); p = 0.02). OxZr heads had more damage in the proximal region compared with the distal region of the head. Location had no impact on damage of CoCr heads. A trend towards increased corrosion in large heads was seen only in the CoCr heads, although this was not statistically significant. Conclusion. Retrieval analysis of OxZr femoral heads showed a decreased amount of fretting and corrosion compared with CoCr femoral heads. OxZr seems to be effective at reducing taper damage. Cite this article: Bone Joint J 2019;101-B:386–389


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. Cite this article: Bone Joint J 2015;97-B:463–72


Bone & Joint Open
Vol. 5, Issue 11 | Pages 971 - 976
5 Nov 2024
Baker G Hill J O'Neill F McChesney J Stevenson M Beverland D

Aims

In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes.

Methods

A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 598 - 603
1 May 2022
Siljander MP Gausden EB Wooster BM Karczewski D Sierra RJ Trousdale RT Abdel MP

Aims

The aim of this study was to evaluate the incidence of liner malseating in two commonly used dual-mobility (DM) designs. Secondary aims included determining the risk of dislocation, survival, and clinical outcomes.

Methods

We retrospectively identified 256 primary total hip arthroplasties (THAs) that included a DM component (144 Stryker MDM and 112 Zimmer-Biomet G7) in 233 patients, performed between January 2012 and December 2019. Postoperative radiographs were reviewed independently for malseating of the liner by five reviewers. The mean age of the patients at the time of THA was 66 years (18 to 93), 166 (65%) were female, and the mean BMI was 30 kg/m2 (17 to 57). The mean follow-up was 3.5 years (2.0 to 9.2).


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 467 - 470
1 May 2023
McBryde CW Prakash R Haddad FS


Bone & Joint Open
Vol. 2, Issue 10 | Pages 858 - 864
18 Oct 2021
Guntin J Plummer D Della Valle C DeBenedetti A Nam D

Aims

Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery.

Methods

We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure interobserver and intraobserver reliability.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 33 - 40
1 Jul 2020
Gustafson JA Pourzal R Levine BR Jacobs JJ Lundberg HJ

Aims

The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions.

Methods

Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 31 - 37
1 Mar 2024
Bunyoz KI Tsikandylakis G Mortensen K Gromov K Mohaddes M Malchau H Troelsen A

Aims

In metal-on-polyethylene (MoP) total hip arthroplasty (THA), large metal femoral heads have been used to increase stability and reduce the risk of dislocation. The increased size of the femoral head can, however, lead to increased taper corrosion, with the release of metal ions and adverse reactions. The aim of this study was to investigate the relationship between the size of the femoral head and the levels of metal ions in the blood in these patients.

Methods

A total of 96 patients were enrolled at two centres and randomized to undergo MoP THA using either a 32 mm metal head or a femoral head of between 36 mm and 44 mm in size, being the largest possible to fit the thinnest available polyethylene insert. The levels of metal ions and patient-reported outcome measures (Oxford Hip Score, University of California, Los Angeles Activity Scale) were recorded at two and five years postoperatively.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1035 - 1041
1 Sep 2019
Markel DC Bou-Akl T Rossi MD Pizzimenti N Wu B Ren W

Aims

The aim of this study was to evaluate blood metal ion levels, leucocyte profiles, and serum cytokines in patients with a total hip arthroplasty (THA) involving modular dual-mobility components.

Patients and Methods

A total of 39 patients were recruited, with clinical follow-up of up to two years. Outcome was assessed using the Harris Hip Score (HHS, the 12-Item Short-Form Health Survey (SF-12), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and a visual analogue scale (VAS) for pain. Blood concentrations of cobalt (Co), chromium (Cr), and serum cytokines were measured. Subpopulations of leucocytes were analyzed by flow cytometry.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 27 - 32
1 Jul 2020
Heckmann N Weitzman DS Jaffri H Berry DJ Springer BD Lieberman JR

Aims

Dual mobility (DM) bearings are an attractive treatment option to obtain hip stability during challenging primary and revision total hip arthroplasty (THA) cases. The purpose of this study was to analyze data submitted to the American Joint Replacement Registry (AJRR) to characterize utilization trends of DM bearings in the USA.

Methods

All primary and revision THA procedures reported to AJRR from 2012 to 2018 were analyzed. Patients of all ages were included and subdivided into DM and traditional bearing surface cohorts. Patient demographics, geographical region, hospital size, and teaching affiliation were assessed. Associations were determined by chi-squared analysis and logistic regression was performed to assess outcome variables.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 66 - 72
1 Jul 2021
Hernandez NM Hinton ZW Wu CJ Lachiewicz PF Ryan SP Wellman SS

Aims

Modular dual mobility (MDM) acetabular components are often used with the aim of reducing the risk of dislocation in revision total hip arthroplasty (THA). There is, however, little information in the literature about its use in this context. The aim of this study, therefore, was to evaluate the outcomes in a cohort of patients in whom MDM components were used at revision THA, with a mean follow-up of more than five years.

Methods

Using the database of a single academic centre, 126 revision THAs in 117 patients using a single design of an MDM acetabular component were retrospectively reviewed. A total of 94 revision THAs in 88 patients with a mean follow-up of 5.5 years were included in the study. Survivorship was analyzed with the endpoints of dislocation, reoperation for dislocation, acetabular revision for aseptic loosening, and acetabular revision for any reason. The secondary endpoints were surgical complications and the radiological outcome.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 573 - 579
1 May 2020
Krueger DR Guenther K Deml MC Perka C

Aims

We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed.

Methods

All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 359 - 367
1 Mar 2022
Deere K Matharu GS Ben-Shlomo Y Wilkinson JM Blom AW Sayers A Whitehouse MR

Aims

A recent report from France suggested an association between the use of cobalt-chrome (CoCr) femoral heads in total hip arthroplasties (THAs) and an increased risk of dilated cardiomyopathy and heart failure. CoCr is a commonly used material in orthopaedic implants. If the reported association is causal, the consequences would be significant given the millions of joint arthroplasties and other orthopaedic procedures in which CoCr is used annually. We examined whether CoCr-containing THAs were associated with an increased risk of all-cause mortality, heart outcomes, cancer, and neurodegenerative disorders in a large national database.

Methods

Data from the National Joint Registry was linked to NHS English hospital inpatient episodes for 374,359 primary THAs with up to 14.5 years' follow-up. We excluded any patients with bilateral THAs, knee arthroplasties, indications other than osteoarthritis, aged under 55 years, and diagnosis of one or more outcome of interest before THA. Implants were grouped as either containing CoCr or not containing CoCr. The association between implant construct and the risk of all-cause mortality and incident heart failure, cancer, and neurodegenerative disorders was examined.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 44 - 49
1 Jan 2018
Berstock JR Whitehouse MR Duncan CP

Aims

To present a surgically relevant update of trunnionosis.

Materials and Methods

Systematic review performed April 2017.


Bone & Joint Open
Vol. 1, Issue 12 | Pages 743 - 748
1 Dec 2020
Mahon J McCarthy CJ Sheridan GA Cashman JP O'Byrne JM Kenny P

Aims

The Exeter V40 cemented femoral stem was first introduced in 2000. The largest single-centre analysis of this implant to date was published in 2018 by Westerman et al. Excellent results were reported at a minimum of ten years for the first 540 cases performed at the designer centre in the Exeter NHS Trust, with stem survivorship of 96.8%. The aim of this current study is to report long-term outcomes and survivorship for the Exeter V40 stem in a non-designer centre.

Methods

All patients undergoing primary total hip arthroplasty using the Exeter V40 femoral stem between 1 January 2005 and 31 January 2010 were eligible for inclusion. Data were collected prospectively, with routine follow-up at six to 12 months, two years, five years, and ten years. Functional outcomes were assessed using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. Outcome measures included data on all components in situ beyond ten years, death occurring within ten years with components in situ, and all-cause revision surgery.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 15 - 18
1 Oct 2021


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 911 - 916
1 Jul 2015
Del Balso C Teeter MG Tan SC Lanting BA Howard JL

Tribocorrosion at the head–neck taper interface – so-called ‘taperosis’ – may be a source of metal ions and particulate debris in metal-on-polyethylene total hip arthroplasty (THA).

We examined the effect of femoral head length on fretting and corrosion in retrieved head–neck tapers in vivo for a minimum of two years (mean 8.7 years; 2.6 to 15.9). A total of 56 femoral heads ranging from 28 mm to 3 mm to 28 mm + 8 mm, and 17 femoral stems featuring a single taper design were included in the study. Fretting and corrosion were scored in three horizontally oriented concentric zones of each taper by stereomicroscopy.

Head length was observed to affect fretting (p = 0.03), with 28 mm + 8 mm femoral heads showing greater total fretting scores than all other head lengths. The central zone of the femoral head bore taper was subject to increased fretting damage (p = 0.01), regardless of head length or stem offset. High-offset femoral stems were associated with greater total fretting of the bore taper (p = 0.04).

Increased fretting damage is seen with longer head lengths and high-offset femoral stems, and occurs within a central concentric zone of the femoral head bore taper. Further investigation is required to determine the effect of increased head size, and variations in head–neck taper design.

Cite this article: Bone Joint J 2015; 97-B:911–16.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims

Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design.

Patients and Methods

This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m2 and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (sd 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives

The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors.

Methods

A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives

Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection.

Materials and Methods

Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 57 - 61
1 Jun 2019
Chalmers BP Mangold DG Hanssen AD Pagnano MW Trousdale RT Abdel MP

Aims

Modular dual-mobility constructs reduce the risk of dislocation after revision total hip arthroplasty (THA). However, questions about metal ions from the cobalt-chromium (CoCr) liner persist, and are particularly germane to patients being revised for adverse local tissue reactions (ALTR) to metal. We determined the early- to mid-term serum Co and Cr levels after modular dual-mobility components were used in revision and complex primary THAs, and specifically included patients revised for ALTR.

Patients and Methods

Serum Co and Cr levels were measured prospectively in 24 patients with a modular dual-mobility construct and a ceramic femoral head. Patients with CoCr heads or contralateral THAs with CoCr heads were excluded. The mean age was 63 years (35 to 83), with 13 patients (54%) being female. The mean follow-up was four years (2 to 7). Indications for modular dual-mobility were prosthetic joint infection treated with two-stage exchange and subsequent reimplantation (n = 8), ALTR revision (n = 7), complex primary THA (n = 7), recurrent instability (n = 1), and periprosthetic femoral fracture (n = 1). The mean preoperative Co and Cr in patients revised for an ALTR were 29.7 μg/l (2 to 146) and 21.5 μg/l (1 to 113), respectively.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 3 - 6
1 Nov 2013
Wassef AJ Schmalzried TP

A modular femoral head–neck junction has practical advantages in total hip replacement. Taper fretting and corrosion have so far been an infrequent cause of revision. The role of design and manufacturing variables continues to be debated. Over the past decade several changes in technology and clinical practice might result in an increase in clinically significant taper fretting and corrosion. Those factors include an increased usage of large diameter (36 mm) heads, reduced femoral neck and taper dimensions, greater variability in taper assembly with smaller incision surgery, and higher taper stresses due to increased patient weight and/or physical activity. Additional studies are needed to determine the role of taper assembly compared with design, manufacturing and other implant variables.

Cite this article: Bone Joint J 2013;95-B, Supple A:3–6.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 11 - 13
1 Nov 2012
Cuckler JM

Hip implant retrieval analysis is the most important source of insight into the performance of new materials and designs of hip arthroplasties. Even the most rigorous in vitro testing will not accurately simulate the behavior of implant materials and new designs of prosthetic arthroplasties. Retrieval analysis has revealed such factors as the effects of gamma-in-air sterilisation of polyethylene, fatigue failure mechanisms of polymethylmethacrylate bone cement, fretting corrosion of Morse taper junctions, third body wear effects of both hard-on-hard and hard-on-soft bearing couples, and the effects of impingement of components on the full spectrum of bearing surfaces, none of which was predicted by pre-implantation in vitro testing of these materials and combinations. The temporal sequence of the retrieval process is approximately six years from first implantation through retrieval analysis, laboratory investigation, and publication of results, and thus, in addition to rigorous clinical evaluation, represents the true development and insight cycle for new designs and materials.


Bone & Joint 360
Vol. 5, Issue 3 | Pages 10 - 12
1 Jun 2016


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1011 - 1021
1 Aug 2013
Krishnan H Krishnan SP Blunn G Skinner JA Hart AJ

Following the recall of modular neck hip stems in July 2012, research into femoral modularity will intensify over the next few years. This review aims to provide surgeons with an up-to-date summary of the clinically relevant evidence. The development of femoral modularity, and a classification system, is described. The theoretical rationale for modularity is summarised and the clinical outcomes are explored. The review also examines the clinically relevant problems reported following the use of femoral stems with a modular neck.

Joint replacement registries in the United Kingdom and Australia have provided data on the failure rates of modular devices but cannot identify the mechanism of failure. This information is needed to determine whether modular neck femoral stems will be used in the future, and how we should monitor patients who already have them implanted.

Cite this article: Bone Joint J 2013;95-B:1011–21.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 50 - 53
1 Jan 2016
Konan S Garbuz DS Masri BA Duncan CP

Tapered fluted titanium stems are increasingly used for femoral revision arthroplasty. They are available in modular and non-modular forms. Modularity has advantages when the bone loss is severe, the proximal femur is mis shapen or the surgeon is unfamiliar with the implant, but it introduces the risk of fracture of the stem at the junction between it and the proximal body segment. For that reason, and while awaiting intermediate-term results of more recently introduced designs of this junction, non-modularity has attracted attention, at least for straightforward revision cases.

We review the risks and causes of fracture of tapered titanium modular revision stems and present an argument in favour of the more selective use of modular designs.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):50–3.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims

The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle.

Patients and Methods

We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 6 - 13
1 Jan 2016
Cheung AC Banerjee S Cherian JJ Wong F Butany J Gilbert C Overgaard C Syed K Zywiel MG Jacobs JJ Mont MA

Recently, the use of metal-on-metal articulations in total hip arthroplasty (THA) has led to an increase in adverse events owing to local soft-tissue reactions from metal ions and wear debris. While the majority of these implants perform well, it has been increasingly recognised that a small proportion of patients may develop complications secondary to systemic cobalt toxicity when these implants fail. However, distinguishing true toxicity from benign elevations in cobalt ion levels can be challenging.

The purpose of this two part series is to review the use of cobalt alloys in THA and to highlight the following related topics of interest: mechanisms of cobalt ion release and their measurement, definitions of pathological cobalt ion levels, and the pathophysiology, risk factors and treatment of cobalt toxicity. Historically, these metal-on-metal arthroplasties are composed of a chromium-cobalt articulation.

The release of cobalt is due to the mechanical and oxidative stresses placed on the prosthetic joint. It exerts its pathological effects through direct cellular toxicity.

This manuscript will highlight the pathophysiology of cobalt toxicity in patients with metal-on-metal hip arthroplasties.

Take home message: Patients with new or evolving hip symptoms with a prior history of THA warrant orthopaedic surgical evaluation. Increased awareness of the range of systemic symptoms associated with cobalt toxicity, coupled with prompt orthopaedic intervention, may forestall the development of further complications.

Cite this article: Bone Joint J 2016;98-B:6–13.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 67 - 69
1 Nov 2013
Brooks PJ

Dislocation is one of the most common causes of patient and surgeon dissatisfaction following hip replacement and to treat it, the causes must first be understood. Patient factors include age greater than 70 years, medical comorbidities, female gender, ligamentous laxity, revision surgery, issues with the abductors, and patient education. Surgeon factors include the annual quantity of procedures and experience, the surgical approach, adequate restoration of femoral offset and leg length, component position, and soft-tissue or bony impingement. Implant factors include the design of the head and neck region, and so-called skirts on longer neck lengths. There should be offset choices available in order to restore soft-tissue tension. Lipped liners aid in gaining stability, yet if improperly placed may result in impingement and dislocation. Late dislocation may result from polyethylene wear, soft-tissue destruction, trochanteric or abductor disruption and weakness, or infection. Understanding the causes of hip dislocation facilitates prevention in a majority of instances. Proper pre-operative planning includes the identification of patients with a high offset in whom inadequate restoration of offset will reduce soft-tissue tension and abductor efficiency. Component position must be accurate to achieve stability without impingement. Finally, patient education cannot be over-emphasised, as most dislocations occur early, and are preventable with proper instructions.

Cite this article: Bone Joint J 2013;95-B, Supple A:67–9.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 16 - 18
1 Jun 2014

The June 2014 Hip & Pelvis Roundup360 looks at: Modular femoral necks: early signs are not good; is corrosion to blame for modular neck failures; metal-on-metal is not quite a closed book; no excess failures in fixation of displaced femoral neck fractures; noise no problem in hip replacement; heterotopic ossification after hip arthroscopy: are NSAIDs the answer?; thrombotic and bleeding events surprisingly low in total joint replacement; and the elephant in the room: complications and surgical volume.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 472 - 476
1 Apr 2006
Savarino L Greco M Cenni E Cavasinni L Rotini R Baldini N Giunti A

Modern metal-on-metal bearings produce less wear debris and osteolysis, but have the potential adverse effect of release of ions. Improved ceramic-on-ceramic bearings have the lowest wear of all, but the corrosion process has not been analysed.

Our aim was to measure the serum ion release (ng/ml) in 23 patients having stable hip prostheses with a ceramic-on-ceramic coupling (group A) and to compare it with the release in 42 patients with a metal-on-metal bearing (group B) in the medium term. Reference values were obtained from a population of 47 healthy subjects (group C). The concentrations of chromium, cobalt, aluminium and titanium were measured.

There was a significant increase of cobalt, chromium and aluminium levels (p < 0.05) in group B compared with groups A and C. Group A did not differ significantly from the control group. Despite the apparent advantage of a metal-on-metal coupling, especially in younger patients with a long life expectancy, a major concern arises regarding the extent and duration of ion exposure. For this reason, the low corrosion level in a ceramic-on-ceramic coupling could be advantageous.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 895 - 900
1 Jul 2012
Gill IPS Webb J Sloan K Beaver RJ

We present a series of 35 patients (19 men and 16 women) with a mean age of 64 years (36.7 to 75.9), who underwent total hip replacement using the ESKA dual-modular short stem with metal on-polyethylene bearing surfaces. This implant has a modular neck section in addition to the modular head. Of these patients, three presented with increasing post-operative pain due to pseudotumour formation that resulted from corrosion at the modular neck-stem junction. These patients underwent further surgery and aseptic lymphocytic vaculitis associated lesions were demonstrated on histological analysis.

Retrieval analysis of two modular necks showed corrosion at the neck-stem taper. Blood cobalt and chromium levels were measured at a mean of nine months (3 to 28) following surgery. These were compared with the levels in seven control patients (three men and four women) with a mean age of 53.4 years (32.1 to 64.1), who had an identical prosthesis and articulation but with a prosthesis that had no modularity at neck-stem junction. The mean blood levels of cobalt in the study group were raised at 50.75 nmol/l (5 to 145) compared with 5.6 nmol/l (2 to 13) in control patients.

Corrosion at neck-stem tapers has been identified as an important source of metal ion release and pseudotumour formation requiring revision surgery. Finite element modelling of the dual modular stem demonstrated high stresses at the modular stem-neck junction. Dual modular cobalt-chrome hip prostheses should be used with caution due to these concerns.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1427 - 1430
1 Oct 2011
Lindgren JU Brismar BH Wikstrom AC

A 70-year-old man with an uncemented metal-on-polyethylene total hip prosthesis underwent revision arthroplasty 33 months later because of pain, swelling and recurrent dislocation. There appeared to be corrosion and metal release from the prosthetic head, resulting in pseudotumour formation and severe local soft-tissue destruction. The corrosion occurred at the junction between the titanium-molybdenum-zirconium-iron taper and the cobalt-chrome-molybdenum head, but the mechanism was unproven.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 281 - 286
1 Feb 2012
Chana R Esposito C Campbell PA Walter WK Walter WL

We report a case of a male patient presenting with bilateral painful but apparently well-positioned and -fixed large-diameter metal-on-metal hip replacements four years post-operatively. Multiple imaging modes revealed a thick-walled, cystic expansile mass in communication with the hip joint (a pseudotumour). Implant retrieval analysis and tissue culture eliminated high bearing wear or infection as causes for the soft-tissue reaction, but noted marked corrosion of the modular neck taper adaptor and corrosion products in the tissues. Therefore, we believe corrosion products from the taper caused by mismatch of the implant components led to pseudotumour formation requiring revision.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1001 - 1004
1 Aug 2011
Fisher J

Bioengineering reasons for increased wear and failure of metal-on-metal (MoM) bearings in hip prostheses have been described. Low wear occurs in MoM hips when the centre of the femoral head is concentric with the centre of the acetabular component and the implants are correctly positioned. Translational or rotational malpositioning of the components can lead to the contact-patch of the femoral component being displaced to the rim of the acetabular component, resulting in a ten- to 100-fold increase in wear and metal ion levels. This may cause adverse tissue reactions, loosening of components and failure of the prosthesis.


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 579 - 584
1 May 2016
Osman K Panagiotidou AP Khan M Blunn G Haddad FS

There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface.

We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice.

Cite this article: Bone Joint J 2016;98-B:579–84.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 735 - 745
1 Jun 2012
Jeffers JRT Walter WL

This systematic review of the literature summarises the clinical experience with ceramic-on-ceramic hip bearings over the past 40 years and discusses the concerns that exist in relation to the bearing combination. Loosening, fracture, liner chipping on insertion, liner canting and dissociation, edge-loading and squeaking have all been reported, and the relationship between these issues and implant design and surgical technique is investigated. New design concepts are introduced and analysed with respect to previous clinical experience.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 724 - 730
1 Jun 2008
Hartofilakidis G Georgiades G Babis GC Yiannakopoulos CK

We have evaluated the results of total hip replacement in patients with congenital hip disease using 46 cemented all-polyethylene Charnley acetabular components implanted with the cotyloplasty technique in 34 patients (group A), and compared them with 47 metal-backed cementless acetabular components implanted without bone grafting in 33 patients (group B). Patients in group A were treated between 1988 and 1993 and those in group B between 1990 and 1995. The mean follow-up for group A was 16.6 years (12 to 18) and the mean follow-up for group B was 13.4 years (10 to 16).

Revision for aseptic loosening was undertaken in 15 hips (32.6%) in group A and in four hips (8.5%) in group B. When liner exchange was included, a total of 13 hips were revised in group B (27.7%). The mean polyethylene wear was 0.11 mm/yr (0.002 to 0.43) and 0.107 mm/yr (0 to 0.62) for groups A and B, respectively. Polyethylene wear in group A was associated with linear osteolysis, and in group B with expansile osteolysis.

In patients with congenital hip disease, when 80% cover of the implant can be obtained, a cementless acetabular component appears to be acceptable and provides durable fixation. However, because of the type of osteolysis arising with these devices, early exchange of a worn liner is recommended before extensive bone loss makes revision surgery more complicated.


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1069 - 1074
1 Aug 2013
Rao BM Kamal TT Vafaye J Moss M

We report the results of revision total knee replacement (TKR) in 26 patients with major metaphyseal osteolytic defects using 29 trabecular metal cones in conjunction with a rotating hinged total knee prosthesis. The osteolytic defects were types II and III (A or B) according to the Anderson Orthopaedic Research Institute (AORI) classification. The mean age of the patients was 72 years (62 to 84) and there were 15 men and 11 women. In this series patients had undergone a mean of 2.34 previous total knee arthroplasties. The main objective was to restore anatomy along with stability and function of the knee joint to allow immediate full weight-bearing and active knee movement. Outcomes were measured using Knee Society scores, Oxford knee scores, range of movement of the knee and serial radiographs. Patients were followed for a mean of 36 months (24 to 49). The mean Oxford knee clinical scores improved from 12.83 (10 to 15) to 35.20 (32 to 38) (p < 0.001) and mean American Knee Society scores improved from 33.24 (13 to 36) to 81.12 (78 to 86) (p < 0.001). No radiolucent lines suggestive of loosening were seen around the trabecular metal cones, and by one year all the radiographs showed good osteo-integration. There was no evidence of any collapse or implant migration. Our early results confirm the findings of others that trabecular metal cones offer a useful way of managing severe bone loss in revision TKR.

Cite this article: Bone Joint J 2013;95-B:1069–74.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1602 - 1609
1 Dec 2011
Malviya A Ramaskandhan JR Bowman R Hashmi M Holland JP Kometa S Lingard E

The aim of this study was to investigate the possible benefit of large-head metal-on-metal bearing on a stem for primary hip replacement compared with a 28 mm diameter conventional metal-on-polyethylene bearing in a prospective randomised controlled trial. We investigated cemented stem behaviour between these two different bearings using Einzel-Bild-Röntgen-Analyse, clinical and patient reported measures (Harris hip score, Western Ontario and McMaster Universities osteoarthritis index, Short Form-36 and satisfaction) and whole blood metal ion levels at two years. A power study indicated that 50 hips were needed in each group to detect subsidence of > 5 mm at two years with a p-value of < 0.05.

Significant improvement (p < 0.001) was found in the mean clinical and patient reported outcomes at two years for both groups. Comparison of outcomes between the groups at two years showed no statistically significant difference for mean stem migration, clinical and patient reported outcomes; except overall patient satisfaction which was higher for metal-on-metal group (p = 0.05). Metal ion levels were raised above the Medicines and Healthcare products Regulatory Agency advised safety level (7 µg per litre) in 20% of the metal-on-metal group and in one patient in metal-on-polyethylene group (who had a metal-on-metal implant on the contralateral side). Two patients in the metal-on-metal group were revised, one for pseudotumour and one for peri-prosthetic fracture.

Use of large modular heads is associated with a risk of raised whole blood metal ion levels despite using a proven bearing from resurfacing. The head-neck junction or excess stem micromotion are possibly the weak links warranting further research.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 609 - 614
1 May 2007
Himanen A Belt EA Lehto MUK Hämäläinen MMJ

We evaluated the survival of moulded monoblock and modular tibial components of the AGC total knee replacement in patients with rheumatoid arthritis. Between 1985 and 1995, 751 knees with this diagnosis were replaced at our institution. A total of 256 tibial components were of the moulded design and 495 of the modular design. The mean follow-up of the moulded subgroup was 9.6 years (0.5 to 14.7), and that of the modular group 7.0 years (0.1 to 14.7).

The groups differed significantly from each other in Larsen grade, cementing of components and patellar resurfacing, but no statistically significant difference between the survival of the components was found (Log rank test, p = 0.91). The cumulative success rate of the moulded group was 96.8% (95% confidence interval 93.6% to 98.4%) at five years and 94.4% (95% confidence interval 90.4% to 96.7%) at ten years, and of the modular group 96.2% (95% confidence interval 94% to 97.6%) and 93.6% (95% confidence interval 89.7% to 96%), respectively. Revision was required in 37 total knee replacements, the main causes were infection, pain, loosening of the tibial component and patellar problems. Survival rates for both components were satisfactory.