Advertisement for orthosearch.org.uk
Results 1 - 50 of 65
Results per page:
Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims. Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. Methods. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction. Results. When all ethnicities were combined the mean values for LL, SS, PT, and PI were: 47.4° (SD 11.0°), 35.8° (SD 7.8°), 14.0° (SD 7.2°), and 48.8° (SD 10°), respectively. LL, SS, and PT had statistically significant (p < 0.001) changes per decade at: −1.5° (SD 0.3°), −1.3° (SD 0.3°), and 1.4° (SD 0.1°). Asian populations had the largest age-dependent change in LL, SS, and PT compared to any other ethnicity per decade at: −1.3° (SD 0.3°) to −0.5° (SD 1.3°), –1.2° (SD 0.2°) to −0.3° (SD 0.3°), and 1.7° (SD 0.2°) versus 1.1° (SD 0.1°), respectively. Conclusion. Ageing alters the orientation between the spine and pelvis, causing LL, SS, and PT to modify their orientations in a compensatory mechanism to maintain sagittal alignment for balance when standing. Asian populations have the largest degree of age-dependent change to their spinopelvic parameters compared to any other ethnicity, likely due to their lower PI. Cite this article: Bone Joint Res 2023;12(4):231–244


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


Bone & Joint Open
Vol. 3, Issue 1 | Pages 77 - 84
24 Jan 2022
Onishi E Ota S Fujita S Tsukamoto Y Yamashita S Hashimura T Matsunaga K Yasuda T

Aims. This study aimed to evaluate sagittal spinopelvic alignment (SSPA) in the early stage of rapidly destructive coxopathy (RDC) compared with hip osteoarthritis (HOA), and to identify risk factors of SSPA for destruction of the femoral head within 12 months after the disease onset. Methods. This study enrolled 34 RDC patients with joint space narrowing > 2 mm within 12 months after the onset of hip pain and 25 HOA patients showing femoral head destruction. Sharp angle was measured for acetabular coverage evaluation. Femoral head collapse ratio was calculated for assessment of the extent of femoral head collapse by RDC. The following parameters of SSPA were evaluated using the whole spinopelvic radiograph: pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), sagittal vertical axis (SVA), thoracic kyphosis angle (TK), lumbar lordosis angle (LL), and PI-LL. Results. The HOA group showed higher Sharp angles compared with the RDC group. PT and PI-LL were higher in the RDC group than the HOA group. SS and LL were lower in the RDC group than the HOA group. No difference was found in PI, SVA, or TK between the groups. Femoral head collapse ratio was associated with PT, SS, SVA, LL, and PI-LL. A PI-LL > 20° and a PT > 30° correlated with greater extent of femoral head destruction by RDC. From regression analysis, SS and SVA were significantly associated with the femoral head collapse ratio within 12 months after disease onset. Conclusion. Compared with HOA, RDC in the early stage correlated with sagittal spinopelvic malalignment. SS and SVA may partially contribute to the extent of femoral head destruction by RDC within 12 months after the onset of hip pain. The present study indicates a potential role of SSPA assessment in identification of RDC patients at risk for subsequent bone destruction. Cite this article: Bone Jt Open 2022;3(1):77–84


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1326 - 1331
1 Oct 2013
Eilander W Harris SJ Henkus HE Cobb JP Hogervorst T

Orientation of the acetabular component influences wear, range of movement and the incidence of dislocation after total hip replacement (THR). During surgery, such orientation is often referenced to the anterior pelvic plane (APP), but APP inclination relative to the coronal plane (pelvic tilt) varies substantially between individuals. In contrast, the change in pelvic tilt from supine to standing (dPT) is small for nearly all individuals. Therefore, in THR performed with the patient supine and the patient’s coronal plane parallel to the operating table, we propose that freehand placement of the acetabular component placement is reliable and reflects standing (functional) cup position. We examined this hypothesis in 56 hips in 56 patients (19 men) with a mean age of 61 years (29 to 80) using three-dimensional CT pelvic reconstructions and standing lateral pelvic radiographs. We found a low variability of acetabular component placement, with 46 implants (82%) placed within a combined range of 30° to 50° inclination and 5° to 25° anteversion. Changing from the supine to the standing position (analysed in 47 patients) was associated with an anteversion change < 10° in 45 patients (96%). dPT was < 10° in 41 patients (87%). In conclusion, supine THR appears to provide reliable freehand acetabular component placement. In most patients a small reclination of the pelvis going from supine to standing causes a small increase in anteversion of the acetabular component.

Cite this article: Bone Joint J 2013;95-B:1326–31.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1289 - 1296
1 Oct 2018
Berliner JL Esposito CI Miller TT Padgett DE Mayman DJ Jerabek SA

Aims. The aims of this study were to measure sagittal standing and sitting lumbar-pelvic-femoral alignment in patients before and following total hip arthroplasty (THA), and to consider what preoperative factors may influence a change in postoperative pelvic position. Patients and Methods. A total of 161 patients were considered for inclusion. Patients had a mean age of the remaining 61 years (. sd. 11) with a mean body mass index (BMI) of 28 kg/m. 2. (. sd. 6). Of the 161 patients, 82 were male (51%). We excluded 17 patients (11%) with spinal conditions known to affect lumbar mobility as well as the rotational axis of the spine. Standing and sitting spine-to-lower-limb radiographs were taken of the remaining 144 patients before and one year following THA. Spinopelvic alignment measurements, including sacral slope, lumbar lordosis, and pelvic incidence, were measured. These angles were used to calculate lumbar spine flexion and femoroacetabular hip flexion from a standing to sitting position. A radiographic scoring system was used to identify those patients in the series who had lumbar degenerative disc disease (DDD) and compare spinopelvic parameters between those patients with DDD (n = 38) and those who did not (n = 106). Results. Following THA, patients sat with more anterior pelvic tilt (mean increased sacral slope 18° preoperatively versus 23° postoperatively; p = 0.001) and more lumbar lordosis (mean 28° preoperatively versus 35° postoperatively; p = 0.001). Preoperative change in sacral slope from standing to sitting (p = 0.03) and the absence of DDD (p = 0.001) correlated to an increased change in postoperative sitting pelvic alignment. Conclusion. Sitting lumbar-pelvic-femoral alignment following THA may be driven by hip arthritis and/or spinal deformity. Patients with DDD and fixed spinopelvic alignment have a predictable pelvic position one year following THA. Patients with normal spines have less predictable postoperative pelvic position, which is likely to be driven by hip stiffness. Cite this article: Bone Joint J 2018;100-B:1289–96


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 41 - 46
1 Jul 2020
Ransone M Fehring K Fehring T

Aims. Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA). Methods. In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning. Results. A total of 32 patients had standardized relaxed sitting radiographs, while 35 patients had standardized flexed sitting images. Of the 32 patients with relaxed sitting views, the mean ΔSS was 20.7° (SD 8.9°). No patients exhibited an increase in SS during relaxed sitting (i.e. anterior pelvic tilt or so-called reverse accommodation). Of the 35 patients with flexed sitting radiographs, the mean ΔSS was only 2.1° (SD 9.7°) with 16/35 (45.71%) showing anterior pelvic tilt, or so-called reverse accommodation, unexpectedly increasing the sitting SS compared to the standing SS. Overall, 18 patients had both relaxed sitting and flexed sitting radiographs. In patients with both types of sitting radiographs, the mean relaxed sit to stand ΔSS was 18.06° (SD 6.07°), while only a 3.00° (SD 10.53°) ΔSS was noted when flexed sitting. There was a mean ΔSS difference of 15.06° (SD 7.67°) noted in the same patient cohort depending on sitting posture (p < 0.001). Conclusion. A 15° mean difference was noted depending on the sitting posture of the patient. Since decisions on component position can be made on preoperative lateral sit-stand radiographs, postural standardization is crucial. If using ΔSS for preoperative planning, the relaxed sitting radiograph is preferred. Cite this article: Bone Joint J 2020;102-B(7 Supple B):41–46


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1370 - 1378
1 Oct 2019
Cheung JPY Chong CHW Cheung PWH

Aims. The aim of this study was to determine the influence of pelvic parameters on the tendency of patients with adolescent idiopathic scoliosis (AIS) to develop flatback deformity (thoracic hypokyphosis and lumbar hypolordosis) and its effect on quality-of-life outcomes. Patients and Methods. This was a radiological study of 265 patients recruited for Boston bracing between December 2008 and December 2013. Posteroanterior and lateral radiographs were obtained before, immediately after, and two-years after completion of bracing. Measurements of coronal and sagittal Cobb angles, coronal balance, sagittal vertical axis, and pelvic parameters were made. The refined 22-item Scoliosis Research Society (SRS-22r) questionnaire was recorded. Association between independent factors and outcomes of postbracing ≥ 6° kyphotic changes in the thoracic spine and ≥ 6° lordotic changes in the lumbar spine were tested using likelihood ratio chi-squared test and univariable logistic regression. Multivariable logistic regression models were then generated for both outcomes with odds ratios (ORs), and with SRS-22r scores. Results. Reduced T5-12 kyphosis (mean -4.3° (. sd. 8.2); p < 0.001), maximum thoracic kyphosis (mean -4.3° (. sd. 9.3); p < 0.001), and lumbar lordosis (mean -5.6° (. sd. 12.0); p < 0.001) were observed after bracing treatment. Increasing prebrace maximum kyphosis (OR 1.133) and lumbar lordosis (OR 0.92) was associated with postbracing hypokyphotic change. Prebrace sagittal vertical axis (OR 0.975), prebrace sacral slope (OR 1.127), prebrace pelvic tilt (OR 0.940), and change in maximum thoracic kyphosis (OR 0.878) were predictors for lumbar hypolordotic changes. There were no relationships between coronal deformity, thoracic kyphosis, or lumbar lordosis with SRS-22r scores. Conclusion. Brace treatment leads to flatback deformity with thoracic hypokyphosis and lumbar hypolordosis. Changes in the thoracic spine are associated with similar changes in the lumbar spine. Increased sacral slope, reduced pelvic tilt, and pelvic incidence are associated with reduced lordosis in the lumbar spine after bracing. Nevertheless, these sagittal parameter changes do not appear to be associated with worse quality of life. Cite this article: Bone Joint J 2019;101-B:1370–1378


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims. It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. Methods. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion. Results. In total, 139 patients were included. Increased spinopelvic motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.05). Loss of hip motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.001). A decreased joint space was associated with a decreased ΔPFA (p = 0.040). The presence of disc space narrowing, disc space narrowing > two levels, and disc narrowing involving the L5–S1 segment were associated with decreased spinopelvic motion (all p < 0.05). Conclusion. Preoperative hip OA as assessed on an AP pelvic radiograph predicts spinopelvic motion. These data suggest that specific hip osteoarthritic morphological characteristics listed above alter spinopelvic motion to a greater extent than others. Cite this article: Bone Joint J 2023;105-B(5):496–503


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims. Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. Methods. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements. Results. With advancing age, patients demonstrate increased posterior APPT, decreased standing LL, decreased LF, higher pelvic incidence minus lumbar lordosis (PI-LL) mismatch, higher prevalence of abnormal spinopelvic mobility, and higher HUI percentage. With each decade, APPT progressed posteriorly 2.1°, LF declined 6.0°, PI-LL mismatch increased 2.9°, and spinopelvic mobility increased 3.8°. Significant differences were found between the sexes for APPT, SPT, SS, LL, and LF, but were not felt to be clinically relevant. Conclusion. With advancing age, spinopelvic biomechanics demonstrate decreased spinal mobility and increased pelvic/hip mobility. Surgeons should consider the higher prevalence of instability risk factors in elderly patients and anticipate changes evolving in spinopelvic biomechanics for young patients. Cite this article: Bone Joint J 2024;106-B(8):792–801


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1766 - 1773
1 Dec 2021
Sculco PK Windsor EN Jerabek SA Mayman DJ Elbuluk A Buckland AJ Vigdorchik JM

Aims. Spinopelvic mobility plays an important role in functional acetabular component position following total hip arthroplasty (THA). The primary aim of this study was to determine if spinopelvic hypermobility persists or resolves following THA. Our second aim was to identify patient demographic or radiological factors associated with hypermobility and resolution of hypermobility after THA. Methods. This study investigated patients with preoperative posterior hypermobility, defined as a change in sacral slope (SS) from standing to sitting (ΔSS. stand-sit. ) ≥ 30°. Radiological spinopelvic parameters, including SS, pelvic incidence (PI), lumbar lordosis (LL), PI-LL mismatch, anterior pelvic plane tilt (APPt), and spinopelvic tilt (SPT), were measured on preoperative imaging, and at six weeks and a minimum of one year postoperatively. The severity of bilateral hip osteoarthritis (OA) was graded using Kellgren-Lawrence criteria. Results. A total of 136 patients were identified as having preoperative spinopelvic hypermobility. At one year after THA, 95% (129/136) of patients were no longer categorized as hypermobile on standing and sitting radiographs (ΔSS. stand-sit. < 30°). Mean ΔSS. stand-sit. decreased from 36.4° (SD 5.1°) at baseline to 21.4° (SD 6.6°) at one year (p < 0.001). Mean SS. seated. increased from baseline (11.4° (SD 8.8°)) to one year after THA by 11.5° (SD 7.4°) (p < 0.001), which correlates to an 8.5° (SD 5.5°) mean decrease in seated functional cup anteversion. Contralateral hip OA was the only radiological predictor of hypermobility persisting at one year after surgery. The overall reoperation rate was 1.5%. Conclusion. Spinopelvic hypermobility was found to resolve in the majority (95%) of patients one year after THA. The increase in SS. seated. was clinically significant, suggesting that current target recommendations for the hypermobile patient (decreased anteversion and inclination) should be revisited. Cite this article: Bone Joint J 2021;103-B(12):1766–1773


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 17 - 24
1 Jul 2021
Vigdorchik JM Sharma AK Buckland AJ Elbuluk AM Eftekhary N Mayman DJ Carroll KM Jerabek SA

Aims. Patients with spinal pathology who undergo total hip arthroplasty (THA) have an increased risk of dislocation and revision. The aim of this study was to determine if the use of the Hip-Spine Classification system in these patients would result in a decreased rate of postoperative dislocation in patients with spinal pathology. Methods. This prospective, multicentre study evaluated 3,777 consecutive patients undergoing THA by three surgeons, between January 2014 and December 2019. They were categorized using The Hip-Spine Classification system: group 1 with normal spinal alignment; group 2 with a flatback deformity, group 2A with normal spinal mobility, and group 2B with a stiff spine. Flatback deformity was defined by a pelvic incidence minus lumbar lordosis of > 10°, and spinal stiffness was defined by < 10° change in sacral slope from standing to seated. Each category determined a patient-specific component positioning. Survivorship free of dislocation was recorded and spinopelvic measurements were compared for reliability using intraclass correlation coefficient. Results. A total of 2,081 patients met the inclusion criteria. There were 987 group 1A, 232 group 1B, 715 group 2A, and 147 group 2B patients. A total of 70 patients had a lumbar fusion, most had L4-5 (16; 23%) or L4-S1 (12; 17%) fusions; 51 patients (73%) had one or two levels fused, and 19 (27%) had > three levels fused. Dual mobility (DM) components were used in 166 patients (8%), including all of those in group 2B and with > three level fusions. Survivorship free of dislocation at five years was 99.2% with a 0.8% dislocation rate. The correlation coefficient was 0.83 (95% confidence interval 0.89 to 0.91). Conclusion. This is the largest series in the literature evaluating the relationship between hip-spine pathology and dislocation after THA, and guiding appropriate treatment. The Hip-Spine Classification system allows surgeons to make appropriate evaluations preoperatively, and it guides the use of DM components in patients with spinopelvic pathology in order to reduce the risk of dislocation in these high-risk patients. Cite this article: Bone Joint J 2021;103-B(7 Supple B):17–24


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims. Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Methods. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°. Results. PI showed a positive correlation with parameters of SS, SPT, and LL (r-value range 0.468 to 0.661). Patients with a higher PI value showed higher degrees of standing LL, likely as a compensatory measure to maintain sagittal spine balance. There was a positive correlation between LL and LF such that patients with less standing LL had decreased LF (r = 0.49). Similarly, there was a positive correlation between increased SSD and decreased LF (r = 0.54). PI in isolation did not show any significant correlation with lumbar (r = 0.04) or pelvic mobility (r = 0.02). The majority of patients (range 89.4% to 94.2%) had normal lumbar and pelvic mobility regardless of the PI value. Conclusion. The PI value alone is not indicative of either spinal or pelvic mobility, and thus in isolation may not be a risk factor for THA instability. Patients with SSD had higher rates of spinopelvic stiffness, which may be the mechanism by which PI relates to THA instability risk, but further clinical studies are required. Cite this article: Bone Joint J 2022;104-B(3):352–358


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1309 - 1316
1 Jul 2021
Garg B Bansal T Mehta N

Aims. To describe the clinical, radiological, and functional outcomes in patients with isolated congenital thoracolumbar kyphosis who were treated with three-column osteotomy by posterior-only approach. Methods. Hospital records of 27 patients with isolated congenital thoracolumbar kyphosis undergoing surgery at a single centre were retrospectively analyzed. All patients underwent deformity correction which involved a three-column osteotomy by single-stage posterior-only approach. Radiological parameters (local kyphosis angle (KA), thoracic kyphosis (TK), lumbar lordosis (LL), pelvic tilt (PT), sacral slope (SS), C7 sagittal vertical axis (C7 SVA), T1 slope, and pelvic incidence minus lumbar lordosis (PI-LL)), functional scores, and clinical details of complications were recorded. Results. The mean age of the study population was 13.9 years (SD 6.4). The apex of deformity was in thoracic, thoracolumbar, and lumbar spine in five, 14, and eight patients, respectively. The mean operating time was 178.4 minutes (SD 38.5) and the mean operative blood loss was 701.8 ml (SD 194.4). KA (preoperative mean 70.8° (SD 21.6°) vs final follow-up mean 24.7° (SD 18.9°); p < 0.001) and TK (preoperative mean -1.48° (SD 41.23°) vs final follow-up mean 24.28° (SD 17.29°); p = 0.005) underwent a significant change with surgery. Mean Scoliosis Research Society (SRS-22r) score improved after surgical correction (preoperative mean 3.24 (SD 0.37) vs final follow-up mean 4.28 (SD 0.47); p < 0.001) with maximum improvement in self-image and mental health domains. The overall complication rate was 26%, including two neurological and five non-neurological complications. Permanent neurological deficit was noted in one patient. Conclusion. Deformity correction employing three-column osteotomies by a single-stage posterior-only approach is safe and effective in treating isolated congenital thoracolumbar kyphosis. Cite this article: Bone Joint J 2021;103-B(7):1309–1316


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims. High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique. Methods. SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up. Results. SRS-22r domain and total scores improved significantly from preoperative to final follow-up, except for the mental health domain that remained the same. Slip percentage improved from 75% (SD 15) to 48% (SD 19) and lumbosacral angle from 70° (SD 11) to 101° (SD 11). Preoperatively, 35% had global imbalance, and at follow-up all were balanced. Preoperatively, 63% had an unbalanced pelvis, and at final follow-up this was 32%. SRS-22r scores were not different in patients with a balanced or unbalanced pelvis. However, postoperative pelvic imbalance as measured by L5 incidence was associated with lower SRS-22r self-image and total scores (p = 0.029). Conclusion. In young patients with HGDS, partial reduction and transfixation improves local lumbosacral alignment, restores pelvic, and global balance and provides satisfactory long-term clinical outcomes. Higher SRS-22r self-image and total scores were observed in the patients that had a balanced pelvis (L5I < 60°) at two to 25 years follow-up. Cite this article: Bone Jt Open 2021;2(3):163–173


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 902 - 909
1 Aug 2019
Innmann MM Merle C Gotterbarm T Ewerbeck V Beaulé PE Grammatopoulos G

Aims. This study of patients with osteoarthritis (OA) of the hip aimed to: 1) characterize the contribution of the hip, spinopelvic complex, and lumbar spine when moving from the standing to the sitting position; 2) assess whether abnormal spinopelvic mobility is associated with worse symptoms; and 3) identify whether spinopelvic mobility can be predicted from static anatomical radiological parameters. Patients and Methods. A total of 122 patients with end-stage OA of the hip awaiting total hip arthroplasty (THA) were prospectively studied. Patient-reported outcome measures (PROMs; Oxford Hip Score, Oswestry Disability Index, and Veterans RAND 12-Item Health Survey Score) and clinical data were collected. Sagittal spinopelvic mobility was calculated as the change from the standing to sitting position using the lumbar lordosis angle (LL), sacral slope (SS), pelvic tilt (PT), pelvic-femoral angle (PFA), and acetabular anteinclination (AI) from lateral radiographs. The interaction of the different parameters was assessed. PROMs were compared between patients with normal spinopelvic mobility (10° ≤ ∆PT ≤ 30°) or abnormal spinopelvic mobility (stiff: ∆PT < ± 10°; hypermobile: ∆PT > ± 30°). Multiple regression and receiver operating characteristic (ROC) curve analyses were used to test for possible predictors of spinopelvic mobility. Results. Standing to sitting, the hip flexed by a mean of 57° (. sd. 17°), the pelvis tilted backwards by a mean of 20° (. sd. 12°), and the lumbar spine flexed by a mean of 20° (. sd. 14°); strong correlations were detected. There was no difference in PROMs between patients in the different spinopelvic mobility groups. Maximum hip flexion, standing PT, and standing AI were independent predictors of spinopelvic mobility (R. 2. = 0.42). The combined thresholds for standing was PT ≥ 13° and hip flexion ≥ 88° in the clinical examination, and had 90% sensitivity and 63% specificity of predicting spinopelvic stiffness, while SS ≥ 42° had 84% sensitivity and 67% specificity of predicting spinopelvic hypermobility. Conclusion. The hip, on average, accounts for three-quarters of the standing-to-sitting movement, but there is great variation. Abnormal spinopelvic mobility cannot be screened with PROMs. However, clinical and standing radiological features can predict spinopelvic mobility with good enough accuracy, allowing them to be used as reliable screening tools. Cite this article: Bone Joint J 2019;101-B:902–909


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims. The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL). Methods. A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups. Results. On the basis of cluster analysis of the SRS-22r subscores, the pooled subjects were divided into three HRQOL groups as follows: almost normal (mean 4.24 (SD 0.32)), mildly disabled (mean 3.32 (SD 0.24)), and severely disabled (mean 2.31 (SD 0.35)). Except for CAM-GL, all the alignment parameters differed significantly among the cluster groups. The threshold values of key alignment parameters for severe disability were TPA > 30°, C2-7 lordosis > 13°, PI-LL > 30°, PT > 28°, and knee flexion > 8°. Lumbar spinal stenosis was found to be associated with the symptom severity. Conclusion. This study provides evidence that the three grades of sagittal compensation in whole body alignment correlate with HRQOL scores. The compensation grades depend on the clinical diagnosis, whole body sagittal alignment, and lumbar spinal stenosis. The threshold values of key alignment parameters may be an indication for treatment. Cite this article: Bone Joint J 2020;102-B(10):1359–1367


We investigated the relationship between spinopelvic parameters and disc degeneration in young adult patients with spondylolytic spondylolisthesis. A total of 229 men with a mean age of 21 years (18 to 26) with spondylolytic spondylolisthesis were identified. All radiological measurements, including pelvic incidence, sacral slope, pelvic tilt, lumbar lordosis, sacral inclination, lumbosacral angle (LSA), and sacrofemoral distance, were calculated from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. We analysed the spinopelvic parameters according to disc level, degree of slip and disc degeneration. There were significant positive correlations between the degree of slip and pelvic incidence (p = 0.009), sacral slope (p = 0.003) and lumbar lordosis (p = 0.010). The degree of slip and the LSA were correlated with disc degeneration (p < 0.001 and p = 0.003, respectively). There was also a significant difference between the degree of slip (p < 0.001) and LSA (p = 0.006) according to the segmental level of disc degeneration. Cite this article: Bone Joint J 2013;95-B:1239–43


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 515 - 519
1 Apr 2006
de Loubresse CG Mullins MM Moura B Marmorat J Piriou P Judet T

Spinal deformities are a common feature of Marfan’s syndrome and can be a significant cause of morbidity. The morphology of the scoliosis associated with this condition was previously described by Sponseller, but no correlation with the pelvic parameters has been seen. We performed a retrospective radiological study of 58 patients with scoliosis, secondary to Marfan’s syndrome and related the findings in the thoracolumbar spine to the pelvic parameters, including pelvic version (tilt), pelvic incidence and sacral slope. Our results showed marked abnormalities in the pelvic values compared with those found in the unaffected population, with increased retroversion of the pelvis in particular. In addition we found a close correlation between the different patterns of pelvic parameters and scoliosis morphology. We found that pelvic abnormalities may partially dictate the spinal disorders seen in Marfan’s syndrome. Our results supplement the well-established Sponseller classification, as well as stressing the importance of considering the orientation of the pelvis when planning surgery


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 800 - 806
1 Jun 2014
Karampalis C Tsirikos AI

We describe 13 patients with cerebral palsy and lordoscoliosis/hyperlordosis of the lumbar spine who underwent a posterior spinal fusion at a mean age of 14.5 years (10.8 to 17.4) to improve sitting posture and relieve pain. The mean follow-up was 3.3 years (2.2 to 6.2). The mean pre-operative lumbar lordosis was 108. °. (80 to 150. °. ) and was corrected to 62. °. (43. °.  to 85. °. ); the mean thoracic kyphosis from 17. °. (-23. °. to 35. °. ) to 47. °. (25. °. to 65. °. ); the mean scoliosis from 82. °. (0. °. to 125. °. ) to 22. °. (0. °. to 40. °. ); the mean pelvic obliquity from 21. °. (0. °. to 38. °. ) to 3. °. (0. °. to 15. °. ); the mean sacral slope from 79. °. (54. °. to 90. °. ) to 50. °. (31. °. to 66. °. ). The mean pre-operative coronal imbalance was 5 cm (0 cm to 8.9 cm) and was corrected to 0.6 cm (0 to 3.2). The mean sagittal imbalance of -8 cm (-16 cm to 7.8 cm) was corrected to -1.6 cm (-4 cm to 2.5 cm). The mean operating time was 250 minutes (180 to 360 minutes) and intra-operative blood loss 0.8 of estimated blood volume (0.3 to 2 estimated blood volume). The mean intensive care and hospital stay were 3.5 days (2 to 8) and 14.5 days (10 to 27), respectively. Three patients lost a significant amount of blood intra-operatively and subsequently developed chest or urinary infections and superior mesenteric artery syndrome. An increased pre-operative lumbar lordosis and sacral slope were associated with increased peri-operative morbidity: scoliosis and pelvic obliquity were not. A reduced lumbar lordosis and increased thoracic kyphosis correlated with better global sagittal balance at follow-up. All patients and their parents reported excellent surgical outcomes. Lordoscoliosis and hyperlordosis are associated with significant morbidity in quadriplegic patients. They are rare deformities and their treatment is challenging. Sagittal imbalance is the major component: it can be corrected by posterior fusion of the spine with excellent functional results. Cite this article: Bone Joint J 2014;96-B:800–6


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1244 - 1249
1 Sep 2013
Jeon C Park J Chung N Son K Lee Y Kim J

We investigated the spinopelvic morphology and global sagittal balance of patients with a degenerative retrolisthesis or anterolisthesis. A total of 269 consecutive patients with a degenerative spondylolisthesis were included in this study. There were 95 men and 174 women with a mean age of 64.3 years (. sd. 10.5; 40 to 88). A total of 106 patients had a pure retrolisthesis (R group), 130 had a pure anterolisthesis (A group), and 33 had both (R+A group). A backward slip was found in the upper lumbar levels (mostly L2 or L3) with an almost equal gender distribution in both the R and R+A groups. The pelvic incidence and sacral slope of the R group were significantly lower than those of the A (both p < 0.001) and R+A groups (both p < 0.001). The lumbar lordosis of the R+A group was significantly greater than that of the R (p = 0.025) and A groups (p = 0.014). The C7 plumb line of the R group was located more posteriorly than that of the A group (p = 0.023), but was no different from than that of the R+A group (p = 0.422). The location of C7 plumb line did not differ between the three groups (p = 0.068). The spinosacral angle of the R group was significantly smaller than that of the A group (p < 0.001) and R+A group (p < 0.001). Our findings imply that there are two types of degenerative retrolisthesis: one occurs primarily as a result of degeneration in patients with low pelvic incidence, and the other occurs secondarily as a compensatory mechanism in patients with an anterolisthesis and high pelvic incidence. Cite this article: Bone Joint J 2013;95-B:1244–9


Bone & Joint Open
Vol. 4, Issue 9 | Pages 668 - 675
3 Sep 2023
Aubert T Gerard P Auberger G Rigoulot G Riouallon G

Aims

The risk factors for abnormal spinopelvic mobility (SPM), defined as an anterior rotation of the spinopelvic tilt (∆SPT) ≥ 20° in a flexed-seated position, have been described. The implication of pelvic incidence (PI) is unclear, and the concept of lumbar lordosis (LL) based on anatomical limits may be erroneous. The distribution of LL, including a unusual shape in patients with a high lordosis, a low pelvic incidence, and an anteverted pelvis seems more relevant.

Methods

The clinical data of 311 consecutive patients who underwent total hip arthroplasty was retrospectively analyzed. We analyzed the different types of lumbar shapes that can present in patients to identify their potential associations with abnormal pelvic mobility, and we analyzed the potential risk factors associated with a ∆SPT ≥ 20° in the overall population.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 74 - 80
1 Mar 2024
Heckmann ND Plaskos C Wakelin EA Pierrepont JW Baré JV Shimmin AJ

Aims

Excessive posterior pelvic tilt (PT) may increase the risk of anterior instability after total hip arthroplasty (THA). The aim of this study was to investigate the changes in PT occurring from the preoperative supine to postoperative standing position following THA, and identify factors associated with significant changes in PT.

Methods

Supine PT was measured on preoperative CT scans and standing PT was measured on preoperative and one-year postoperative standing lateral radiographs in 933 patients who underwent primary THA. Negative values indicate posterior PT. Patients with > 13° of posterior PT from preoperative supine to postoperative standing (ΔPT ≤ -13°) radiographs, which corresponds to approximately a 10° increase in functional anteversion of the acetabular component, were compared with patients with less change (ΔPT > -13°). Logistic regression analysis was used to assess preoperative demographic and spinopelvic parameters predictive of PT changes of ≤ -13°. The area under receiver operating characteristic curve (AUC) determined the diagnostic accuracy of the predictive factors.


Bone & Joint 360
Vol. 13, Issue 5 | Pages 37 - 39
1 Oct 2024

The October 2024 Spine Roundup360 looks at: Analysis of risk factors for non-fusion of bone graft in anterior cervical discectomy and fusion: a clinical retrospective study; Does paraspinal muscle mass predict lumbar lordosis before and after decompression for degenerative spinal stenosis?; Return to work after surgery for lumbar disk herniation: a nationwide registry-based study; Can the six-minute walking test assess ambulatory function impairment in patients with cervical spondylotic myelopathy?; Complications after adult deformity surgery: losing more than sleep; Frailty limits how good we can get in adult spine deformity surgery.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 886 - 893
15 Oct 2024
Zhang C Li Y Wang G Sun J

Aims

A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL.

Methods

A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 820 - 825
1 Jul 2022
Dhawan R Baré JV Shimmin A

Aims

Adverse spinal motion or balance (spine mobility) and adverse pelvic mobility, in combination, are often referred to as adverse spinopelvic mobility (SPM). A stiff lumbar spine, large posterior standing pelvic tilt, and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Adverse SPM can create functional malposition of the acetabular components and hence is an instability risk. Adverse pelvic mobility is often, but not always, associated with abnormal spinal motion parameters. Dislocation rates for dual-mobility articulations (DMAs) have been reported to be between 0% and 1.1%. The aim of this study was to determine the early survivorship from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a DMA.

Methods

A multicentre study was performed using data from 227 patients undergoing primary total hip arthroplasty (THA), enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameter had a DMA inserted at the time of their surgery. The mean age was 76 years (22 to 93) and 63% were female (n = 145). At a mean of 14 months (5 to 31) postoperatively, the AOANJRR was analyzed for follow-up information. Reasons for revision and types of revision were identified.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims

The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment.

Methods

Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims

The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?

Methods

A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction.


Aims

The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS).

Methods

A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 148 - 156
1 Jan 2021
Tsirikos AI Carter TH

Aims

To report the surgical outcome of patients with severe Scheuermann’s kyphosis treated using a consistent technique and perioperative management.

Methods

We reviewed 88 consecutive patients with a severe Scheuermann's kyphosis who had undergone posterior spinal fusion with closing wedge osteotomies and hybrid instrumentation. There were 55 males and 33 females with a mean age of 15.9 years (12.0 to 24.7) at the time of surgery. We recorded their demographics, spinopelvic parameters, surgical correction, and perioperative data, and assessed the impact of surgical complications on outcome using the Scoliosis Research Society (SRS)-22 questionnaire.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims

Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy.

Methods

THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims

The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients.

Methods

A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1442 - 1448
1 Sep 2021
McDonnell JM Evans SR McCarthy L Temperley H Waters C Ahern D Cunniffe G Morris S Synnott K Birch N Butler JS

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks.

Cite this article: Bone Joint J 2021;103-B(9):1442–1448.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1345 - 1350
1 Aug 2021
Czubak-Wrzosek M Nitek Z Sztwiertnia P Czubak J Grzelecki D Kowalczewski J Tyrakowski M

Aims

The aim of the study was to compare two methods of calculating pelvic incidence (PI) and pelvic tilt (PT), either by using the femoral heads or acetabular domes to determine the bicoxofemoral axis, in patients with unilateral or bilateral primary hip osteoarthritis (OA).

Methods

PI and PT were measured on standing lateral radiographs of the spine in two groups: 50 patients with unilateral (Group I) and 50 patients with bilateral hip OA (Group II), using the femoral heads or acetabular domes to define the bicoxofemoral axis. Agreement between the methods was determined by intraclass correlation coefficient (ICC) and the standard error of measurement (SEm). The intraobserver reproducibility and interobserver reliability of the two methods were analyzed on 31 radiographs in both groups to calculate ICC and SEm.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 8 - 11
1 Jan 2022
Wright-Chisem J Elbuluk AM Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes.

Cite this article: Bone Joint J 2022;104-B(1):8–11.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 817 - 823
1 Jul 2019
Vigdorchik J Eftekhary N Elbuluk A Abdel MP Buckland AJ Schwarzkopf RS Jerabek SA Mayman DJ

Aims

While previously underappreciated, factors related to the spine contribute substantially to the risk of dislocation following total hip arthroplasty (THA). These factors must be taken into consideration during preoperative planning for revision THA due to recurrent instability. We developed a protocol to assess the functional position of the spine, the significance of these findings, and how to address different pathologies at the time of revision THA.

Patients and Methods

Prospectively collected data on 111 patients undergoing revision THA for recurrent instability from January 2014 to January 2017 at two institutions were included (protocol group) and matched 1:1 to 111 revisions specifically performed for instability not using this protocol (control group). Mean follow-up was 2.8 years. Protocol patients underwent standardized preoperative imaging including supine and standing anteroposterior (AP) pelvis and lateral radiographs. Each case was scored according to the Hip-Spine Classification in Revision THA.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 32 - 35
1 Oct 2021


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1261 - 1267
14 Sep 2020
van Erp JHJ Gielis WP Arbabi V de Gast A Weinans H Arbabi S Öner FC Castelein RM Schlösser TPC

Aims

The aetiologies of common degenerative spine, hip, and knee pathologies are still not completely understood. Mechanical theories have suggested that those diseases are related to sagittal pelvic morphology and spinopelvic-femoral dynamics. The link between the most widely used parameter for sagittal pelvic morphology, pelvic incidence (PI), and the onset of degenerative lumbar, hip, and knee pathologies has not been studied in a large-scale setting.

Methods

A total of 421 patients from the Cohort Hip and Cohort Knee (CHECK) database, a population-based observational cohort, with hip and knee complaints < 6 months, aged between 45 and 65 years old, and with lateral lumbar, hip, and knee radiographs available, were included. Sagittal spinopelvic parameters and pathologies (spondylolisthesis and degenerative disc disease (DDD)) were measured at eight-year follow-up and characteristics of hip and knee osteoarthritis (OA) at baseline and eight-year follow-up. Epidemiology of the degenerative disorders and clinical outcome scores (hip and knee pain and Western Ontario and McMaster Universities Osteoarthritis Index) were compared between low PI (< 50°), normal PI (50° to 60°), and high PI (> 60°) using generalized estimating equations.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims

Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position.

Methods

We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims

The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI.

Patients and Methods

Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research.

Cite this article: Bone Joint J 2019;101-B:808–816.


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 198 - 206
1 Feb 2019
Salib CG Reina N Perry KI Taunton MJ Berry DJ Abdel MP

Aims

Concurrent hip and spine pathologies can alter the biomechanics of spinopelvic mobility in primary total hip arthroplasty (THA). This study examines how differences in pelvic orientation of patients with spine fusions can increase the risk of dislocation risk after THA.

Patients and Methods

We identified 84 patients (97 THAs) between 1998 and 2015 who had undergone spinal fusion prior to primary THA. Patients were stratified into three groups depending on the length of lumbar fusion and whether or not the sacrum was involved. Mean age was 71 years (40 to 87) and 54 patients (56%) were female. The mean body mass index (BMI) was 30 kg/m2 (19 to 45). Mean follow-up was six years (2 to 17). Patients were 1:2 matched to patients with primary THAs without spine fusion. Hazard ratios (HR) were calculated.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1368 - 1374
3 Oct 2020
McDonnell JM Ahern DP Lui DF Yu H Lehovsky J Noordeen H Molloy S Butler JS Gibson A

Aims

Whether a combined anteroposterior fusion or a posterior-only fusion is more effective in the management of patients with Scheuermann’s kyphosis remains controversial. The aim of this study was to compare the radiological and clinical outcomes of these surgical approaches, and to evaluate the postoperative complications with the hypothesis that proximal junctional kyphosis would be more common in one-stage posterior-only fusion.

Methods

A retrospective review of patients treated surgically for Scheuermann’s kyphosis between 2006 and 2014 was performed. A total of 62 patients were identified, with 31 in each group. Parameters were compared to evaluate postoperative outcomes using chi-squared tests, independent-samples t-tests, and z-tests of proportions analyses where applicable.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 376 - 382
1 Mar 2020
Pesenti S Lafage R Henry B Kim HJ Bolzinger M Elysée J Cunningham M Choufani E Lafage V Blanco J Jouve J Widmann R

Aims

To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS).

Methods

We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 198 - 205
1 May 2016
Wang WJ Liu F Zhu Y Sun M Qiu Y Weng WJ

Objectives

Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population.

Methods

Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test.