The April 2024 Children’s orthopaedics Roundup. 360. looks at: Ultrasonography or radiography for suspected paediatric
The December 2023 Children’s orthopaedics Roundup360 looks at: A comprehensive nonoperative treatment protocol for developmental dysplasia of the hip in infants; How common are refractures in childhood?; Femoral nailing for paediatric femoral shaft fracture in children aged eight to ten years; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Paediatric patients with an extremity bone tumour: a secondary analysis of the PARITY trial data; Split tibial tendon transfers in cerebral palsy equinovarus foot deformities; Liposomal bupivacaine nerve block: an answer to opioid use?; Correction with distal femoral transphyseal screws in hemiepiphysiodesis for coronal-plane knee deformity.
Aims. The aim of this study was to describe the incidence of refractures among children, following fractures of all long bones, and to identify when the risk of refracture decreases. Methods. All patients aged under 16 years with a fracture that had occurred in a bone with ongoing growth (open physis) from 1 May 2015 to 31 December 2020 were retrieved from the Swedish Fracture Register. A new fracture in the same segment within one year of the primary fracture was regarded as a refracture. Fracture localization, sex, lateral distribution, and time from primary fracture to refracture were analyzed for all long bones. Results. Of 40,090 primary fractures, 348 children (0.88%) sustained a refracture in the same long bone segment. The diaphyseal forearm was the long bone segment most commonly affected by refractures (n = 140; 3.4%). The median time to refracture was 147 days (interquartile range 82 to 253) in all segments of the long bones combined. The majority of the refractures occurred in boys (n = 236; 67%), and the left side was the most common side to refracture (n = 220; 62%). The data in this study suggest that the risk of refracture decreases after 180 days in the diaphyseal forearm, after 90 days in the
Aims. The aim of this study was to report a complete overview of both incidence, fracture distribution, mode of injury, and patient baseline demographics of paediatric
Low-energy distal radius fractures (DRFs) are the most common upper arm fractures correlated with bone fragility. Vitamin D deficiency is an important risk factor associated with DRFs. However, the relationship between DRF severity and vitamin D deficiency is not elucidated. Therefore, this study aimed to identify the correlation between DRF severity and serum 25-hydroxyvitamin-D level, which is an indicator of vitamin D deficiency. This multicentre retrospective observational study enrolled 122 female patients aged over 45 years with DRFs with extension deformity. DRF severity was assessed by three independent examiners using 3D CT. Moreover, it was categorized based on the AO classification, and the degree of articular and volar cortex comminution was evaluated. Articular comminution was defined as an articular fragment involving three or more fragments, and volar cortex comminution as a fracture in the volar cortex of the distal fragment. Serum 25-hydroxyvitamin-D level, bone metabolic markers, and bone mineral density (BMD) at the lumbar spine, hip, and wrist were evaluated six months after injury. According to DRF severity, serum 25-hydroxyvitamin-D level, parameters correlated with bone metabolism, and BMD was compared.Aims
Methods
The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability.Aims
Methods
Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading.Aims
Methods
Upper limb amputations, ranging from transhumeral to partial hand, can be devastating for patients, their families, and society. Modern paradigm shifts have focused on reconstructive options after upper extremity limb loss, rather than considering the amputation an ablative procedure. Surgical advancements such as targeted muscle reinnervation and regenerative peripheral nerve interface, in combination with technological development of modern prosthetics, have expanded options for patients after amputation. In the near future, advances such as osseointegration, implantable myoelectric sensors, and implantable nerve cuffs may become more widely used and may expand the options for prosthetic integration, myoelectric signal detection, and restoration of sensation. This review summarizes the current advancements in surgical techniques and prosthetics for upper limb amputees. Cite this article:
The aim of this study was to determine the current incidence and epidemiology of humeral diaphyseal fractures. The secondary aim was to explore variation in patient and injury characteristics by fracture location within the humeral diaphysis. Over ten years (2008 to 2017), all adult patients (aged ≥ 16 years) sustaining an acute fracture of the humeral diaphysis managed at the study centre were retrospectively identified from a trauma database. Patient age, sex, medical/social background, injury mechanism, fracture classification, and associated injuries were recorded and analyzed.Aims
Methods
This exploratory randomized controlled trial (RCT) aimed to determine the splint-related outcomes when using the novel biodegradable wood-composite splint (Woodcast) compared to standard synthetic fibreglass (Dynacast) for the immobilization of undisplaced upper limb fractures in children. An exploratory RCT was performed at a tertiary paediatric referral hospital between 1 June 2018 and 30 September 2019. The intention-to-treat population consisted of 170 patients (mean age 8.42 years (SD 3.42); Woodcast (WCG), n = 84, 57 male (67.9%); Dynacast (DNG), n = 86, 58 male (67.4%)). Patients with undisplaced upper limb fractures were randomly assigned to WCG or DNG treatment groups. Primary outcome was the stress stability of the splint material, defined as absence of any deformations or fractures within the splint during study period. Secondary outcomes included patient satisfaction and medical staff opinion. Additionally, biomechanical and chemical analysis of the splint samples was carried out.Aims
Methods
The current global pandemic due to COVID-19 is generating significant burden on the health service in the UK. On 23 March 2020, the UK government issued requirements for a national lockdown. The aim of this multicentre study is to gain a greater understanding of the impact lockdown has had on the rates, mechanisms and types of injuries together with their management across a regional trauma service. Data was collected from an adult major trauma centre, paediatric major trauma centre, district general hospital, and a regional hand trauma unit. Data collection included patient demographics, injury mechanism, injury type and treatment required. Time periods studied corresponded with the two weeks leading up to lockdown in the UK, two weeks during lockdown, and the same two-week period in 2019.Aims
Methods
A retrospective study was performed in 100 children
aged between two and 16 years, with a dorsally angulated stable
fracture of the distal radius or forearm, who were treated with
manipulation in the emergency department (ED) using intranasal diamorphine
and 50% oxygen and nitrous oxide. Pre- and post-manipulation radiographs,
the final radiographs and the clinical notes were reviewed. A successful
reduction was achieved in 90 fractures (90%) and only three children
(3%) required remanipulation and Kirschner wire fixation or internal
fixation. The use of Entonox and intranasal diamorphine is safe and effective
for the closed reduction of a stable paediatric fracture of the
distal radius and forearm in the ED. By facilitating discharge on the same day, there is a substantial
cost benefit to families and the NHS and we recommend this method. Take home message: Simple easily reducible fractures of the distal
radius and forearm in children can be successfully and safely treated
in the ED using this approach, thus avoiding theatre admission and
costly hospital stay. Cite this article:
The Essex-Lopresti injury (ELI) of the forearm
is a rare and serious condition which is often overlooked, leading
to a poor outcome. The purpose of this retrospective case study was to establish
whether early surgery can give good medium-term results. From a group of 295 patients with a fracture of the radial head,
12 patients were diagnosed with ELI on MRI which confirmed injury
to the interosseous membrane (IOM) and ligament (IOL). They were
treated by reduction and temporary Kirschner (K)-wire stabilisation
of the distal radioulnar joint (DRUJ). In addition, eight patients
had a radial head replacement, and two a radial head reconstruction. All patients were examined clinically and radiologically 59 months
(25 to 90) after surgery when the mean Mayo Modified Wrist Score
(MMWS) was 88.4 (78 to 94), the mean Mayo Elbow Performance Scores
(MEPS) 86.7 (77 to 95) and the mean disabilities of arm, shoulder
and hand (DASH) score 20.5 (16 to 31): all of these indicate a good outcome. In case of a high index of suspicion for ELI in patients with
a radial head fracture, we recommend the following: confirmation
of IOM and IOL injury with an early MRI scan; early surgery with
reduction and temporary K-wire stabilisation of the DRUJ; preservation
of the radial head if at all possible or replacement if not, and
functional bracing in supination. This will increase the prospect
of a good result, and avoid the complications of a missed diagnosis
and the difficulties of late treatment. Cite this article:
We conducted an anatomical study to determine
the best technique for transfer of the anterior interosseous nerve (AIN)
for the treatment of proximal ulnar nerve injuries. The AIN, ulnar
nerve, and associated branches were dissected in 24 cadaver arms.
The number of branches of the AIN and length available for transfer
were measured. The nerve was divided just proximal to its termination
in pronator quadratus and transferred to the ulnar nerve through
the shortest available route. Separation of the deep and superficial
branches of the ulnar nerve by blunt dissection alone, was also
assessed. The mean number of AIN branches was 4.8 (3 to 8) and the
mean length of the nerve available for transfer was 72 mm (41 to
106). The transferred nerve reached the ulnar nerve most distally
when placed dorsal to flexor digitorum profundus (FDP). We therefore
conclude that the AIN should be passed dorsal to FDP, and that the
deep and superficial branches of the ulnar nerve require approximately
30 mm of blunt dissection and 20 mm of sharp dissection from the
point of bifurcation to the site of the anastomosis. The use of this technique for transfer of the AIN should improve
the outcome for patients with proximal ulnar nerve injuries. Cite this article:
We investigated whether, in the management of
stable paediatric fractures of the forearm, flexible casts that
can be removed at home are as clinically effective Cite this article:
The aims of this study were to assess the efficacy
of a newly designed radiological technique (the radial groove view)
for the detection of protrusion of screws in the groove for the
extensor pollicis longus tendon (EPL) during plating of distal radial
fractures. We also aimed to determine the optimum position of the
forearm to obtain this view. We initially analysed the anatomy of
the EPL groove by performing three-dimensional CT on 51 normal forearms.
The mean horizontal angle of the groove was 17.8° (14° to 23°).
We found that the ideal position of the fluoroscopic beam to obtain
this view was 20° in the horizontal plane and 5° in the sagittal
plane. We then intra-operatively assessed the use of the radial groove
view for detecting protrusion of screws in the EPL groove in 93
fractures that were treated by volar plating. A total of 13 protruding
screws were detected. They were changed to shorter screws and these
patients underwent CT scans of the wrist immediately post-operatively.
There remained one screw that was protruding. These findings suggest
that the use of the radial groove view intra-operatively is a good
method of assessing the possible protrusion of screws into the groove
of EPL when plating a fracture of the distal radius. Cite this article:
Redisplacement is the most common complication
of immobilisation in a cast for the treatment of diaphyseal fractures
of the forearm in children. We have previously shown that the three-point
index (TPI) can accurately predict redisplacement of fractures of
the distal radius. In this prospective study we applied this index
to assessment of diaphyseal fractures of the forearm in children
and compared it with other cast-related indices that might predict
redisplacement. A total of 76 children were included. Their ages,
initial displacement, quality of reduction, site and level of the
fractures and quality of the casting according to the TPI, Canterbury
index and padding index were analysed. Logistic regression analysis
was used to investigate risk factors for redisplacement. A total
of 18 fractures (24%) redisplaced in the cast. A TPI value of >
0.8 was the only significant risk factor for redisplacement (odds
ratio 238.5 (95% confidence interval 7.063 to 8054.86); p <
0.001). The TPI was far superior to other radiological indices, with
a sensitivity of 84% and a specificity of 97% in successfully predicting
redisplacement. We recommend it for routine use in the management
of these fractures in children. Cite this article: