We performed a systematic review of the literature to determine
whether earlier surgical repair of acute rotator cuff tear (ARCT)
leads to superior post-operative clinical outcomes. The MEDLINE, Embase, CINAHL, Web of Science, Cochrane Libraries,
controlled-trials.com and clinicaltrials.gov databases were searched
using the terms: ‘rotator cuff’, or ‘supraspinatus’, or ‘infraspinatus’,
or ‘teres minor’, or ‘subscapularis’ AND ‘surgery’ or ‘repair’.
This gave a total of 15 833 articles. After deletion of duplicates
and the review of abstracts and full texts by two independent assessors,
15 studies reporting time to surgery for ARCT repair were included.
Studies were grouped based on time to surgery <
3 months (group
A, seven studies), or >
3 months (group B, eight studies). Weighted
means were calculated and compared using Student’s Aims
Methods
Surgical repair of posterosuperior rotator cuff
tears has a poorer outcome and a higher rate of failure compared
with repairs of supraspinatus tears. In this prospective cohort
study 28 consecutive patients with an irreparable posterosuperior
rotator cuff tear after failed conservative or surgical treatment
underwent teres major tendon transfer. Their mean age was 60 years
(48 to 71) and the mean follow-up was 25 months (12 to 80). The
mean active abduction improved from 79° (0° to 150°) pre-operatively
to 105° (20° to 180°) post-operatively (p = 0.011). The mean active
external rotation in 90° abduction improved from 25° (0° to 70°)
pre-operatively to 55° (0° to 90°) post-operatively (p <
0.001).
The mean Constant score improved from 43 (18 to 78) pre-operatively
to 65 (30 to 86) post-operatively (p <
0.001). The median post-operative
VAS (0 to 100) for pain decreased from 63 (0 to 96) pre-operatively to
5 (0 to 56) post-operatively (p <
0.001). In conclusion, teres major transfer effectively restores function
and relieves pain in patients with irreparable posterosuperior rotator
cuff tears and leads to an overall clinical improvement in a relatively
young and active patient group with limited treatment options. Cite this article:
Residual muscle weakness in obstetric brachial plexus palsy results in soft-tissue contractures which limit the functional range of movement and lead to progressive glenoid dysplasia and joint instability. We describe the results of surgical treatment in 98 patients (mean age 2.5 years, 0.5 to 9.0) for the correction of active abduction of the shoulder. The patients underwent transfer of the latissimus dorsi and teres major muscles, release of contractures of subscapularis pectoralis major and minor, and axillary nerve decompression and neurolysis (the modified Quad procedure). The transferred muscles were sutured to the teres minor muscle, not to a point of bony insertion. The mean pre-operative active abduction was 45° (20° to 90°). At a mean follow-up of 4.8 years (2.0 to 8.7), the mean active abduction was 162° (100° to 180°) while 77 (78.6%) of the patients had active abduction of 160° or more. No decline in abduction was noted among the 29 patients (29.6%) followed up for six years or more. This procedure involving release of the contracted internal rotators of the shoulder combined with decompression and neurolysis of the axillary nerve greatly improves active abduction in young patients with muscle imbalance secondary to obstetric brachial plexus palsy.
Between March 1994 and June 2003, 80 patients with brachial plexus palsy underwent a trapezius transfer. There were 11 women and 69 men with a mean age of 31 years (18 to 69). Before operation a full evaluation of muscle function in the affected arm was carried out. A completely flail arm was found in 37 patients (46%). Some peripheral function in the elbow and hand was seen in 43 (54%). No patient had full active movement of the elbow in combination with adequate function of the hand. Patients were followed up for a mean of 2.4 years (0.8 to 8). We performed the operations according to Saha’s technique, with a modification in the last 22 cases. We demonstrated a difference in the results according to the pre-operative status of the muscles and the operative technique. The transfer resulted in an increase of function in all patients and in 74 (95%) a decrease in multidirectional instability of the shoulder. The mean increase in active abduction was from 6° (0 to 45) to 34° (5 to 90) at the last review. The mean forward flexion increased from 12° (0 to 85) to 30° (5 to 90). Abduction (41°) and especially forward flexion (43°) were greater when some residual function of the pectoralis major remained (n = 32). The best results were achieved in those patients with most pre-operative power of the biceps, coracobrachialis and triceps muscles (n = 7), with a mean of 42° of abduction and 56° of forward flexion. Active abduction (28°) and forward flexion (19°) were much less in completely flail shoulders (n = 34). Comparison of the 19 patients with the Saha technique and the 15 with the modified procedure, all with complete paralysis, showed the latter operation to be superior in improving shoulder stability. In all cases a decrease in instability was achieved and inferior subluxation was abolished. The results after trapezius transfer depend on the pre-operative pattern of paralysis and the operative technique. Better results can be achieved in patients who have some function of the biceps, coracobrachialis, pectoralis major and triceps muscles compared with those who have a complete palsy. A simple modification of the operation ensures a decrease in joint instability and an increase in function.