Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:

Aims

This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection.

Methods

We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 484 - 490
1 Apr 2019
Nandra R Matharu G Stevenson J Parry M Grimer R Jeys L

Aims

The aim of this study was to investigate the local recurrence rate at an extended follow-up in patients following navigated resection of primary pelvic and sacral tumours.

Patients and Methods

This prospective cohort study comprised 23 consecutive patients (nine female, 14 male) who underwent resection of a primary pelvic or sacral tumour, using computer navigation, between 2010 and 2012. The mean age of the patients at the time of presentation was 51 years (10 to 77). The rates of local recurrence and mortality were calculated using the Kaplan–Meier method.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 577 - 583
1 Oct 2017
Sallent A Vicente M Reverté MM Lopez A Rodríguez-Baeza A Pérez-Domínguez M Velez R

Objectives

To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection.

Methods

CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s t-test and Mann–Whitney U test were used.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 261 - 266
1 Feb 2017
Laitinen MK Parry MC Albergo JI Grimer RJ Jeys LM

Aims

Due to the complex anatomy of the pelvis, limb-sparing resections of pelvic tumours achieving adequate surgical margins, can often be difficult. The advent of computer navigation has improved the precision of resection of these lesions, though there is little evidence comparing resection with or without the assistance of navigation.

Our aim was to evaluate the efficacy of navigation-assisted surgery for the resection of pelvic bone tumours involving the posterior ilium and sacrum.

Patients and Methods

Using our prospectively updated institutional database, we conducted a retrospective case control study of 21 patients who underwent resection of the posterior ilium and sacrum, for the treatment of a primary sarcoma of bone, between 1987 and 2015. The resection was performed with the assistance of navigation in nine patients and without navigation in 12. We assessed the accuracy of navigation-assisted surgery, as defined by the surgical margin and how this affects the rate of local recurrence, the disease-free survival and the effects on peri-and post-operative morbidity.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 258 - 264
1 Feb 2015
Young PS Bell SW Mahendra A

We report our experience of using a computer navigation system to aid resection of malignant musculoskeletal tumours of the pelvis and limbs and, where appropriate, their subsequent reconstruction. We also highlight circumstances in which navigation should be used with caution.

We resected a musculoskeletal tumour from 18 patients (15 male, three female, mean age of 30 years (13 to 75) using commercially available computer navigation software (Orthomap 3D) and assessed its impact on the accuracy of our surgery. Of nine pelvic tumours, three had a biological reconstruction with extracorporeal irradiation, four underwent endoprosthetic replacement (EPR) and two required no bony reconstruction. There were eight tumours of the bones of the limbs. Four diaphyseal tumours underwent biological reconstruction. Two patients with a sarcoma of the proximal femur and two with a sarcoma of the proximal humerus underwent extra-articular resection and, where appropriate, EPR. One soft-tissue sarcoma of the adductor compartment which involved the femur was resected and reconstructed using an EPR. Computer navigation was used to aid reconstruction in eight patients.

Histological examination of the resected specimens revealed tumour-free margins in all patients. Post-operative radiographs and CT showed that the resection and reconstruction had been carried out as planned in all patients where navigation was used. In two patients, computer navigation had to be abandoned and the operation was completed under CT and radiological control.

The use of computer navigation in musculoskeletal oncology allows accurate identification of the local anatomy and can define the extent of the tumour and proposed resection margins. Furthermore, it helps in reconstruction of limb length, rotation and overall alignment after resection of an appendicular tumour.

Cite this article: Bone Joint J 2015;97-B:258–64.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1417 - 1424
1 Oct 2013
Jeys L Matharu GS Nandra RS Grimer RJ

We hypothesised that the use of computer navigation-assisted surgery for pelvic and sacral tumours would reduce the risk of an intralesional margin. We reviewed 31 patients (18 men and 13 women) with a mean age of 52.9 years (13.5 to 77.2) in whom computer navigation-assisted surgery had been carried out for a bone tumour of the pelvis or sacrum. There were 23 primary malignant bone tumours, four metastatic tumours and four locally advanced primary tumours of the rectum. The registration error when using computer navigation was <  1 mm in each case. There were no complications related to the navigation, which allowed the preservation of sacral nerve roots (n = 13), resection of otherwise inoperable disease (n = 4) and the avoidance of hindquarter amputation (n = 3). The intralesional resection rate for primary tumours of the pelvis and sacrum was 8.7% (n = 2): clear bone resection margins were achieved in all cases. At a mean follow-up of 13.1 months (3 to 34) three patients (13%) had developed a local recurrence. The mean time alive from diagnosis was 16.8 months (4 to 48).

Computer navigation-assisted surgery is safe and has reduced our intralesional resection rate for primary tumours of the pelvis and sacrum. We recommend this technique as being worthy of further consideration for this group of patients.

Cite this article: Bone Joint J 2013;95-B:1417–24.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1414 - 1420
1 Oct 2012
Cho HS Oh JH Han I Kim H

We evaluated the oncological and functional outcome of 18 patients, whose malignant bone tumours were excised with the assistance of navigation, and who were followed up for more than three years. There were 11 men and seven women, with a mean age of 31.8 years (10 to 57). There were ten operations on the pelvic ring and eight joint-preserving limb salvage procedures. The resection margins were free of tumour in all specimens. The tumours, which were stage IIB in all patients, included osteosarcoma, high-grade chondrosarcoma, Ewing’s sarcoma, malignant fibrous histiocytoma of bone, and adamantinoma. The overall three-year survival rate of the 18 patients was 88.9% (95% confidence interval (CI) 75.4 to 100). The three-year survival rate of the patients with pelvic malignancy was 80.0% (95% CI 55.3 to 100), and of the patients with metaphyseal malignancy was 100%. The event-free survival was 66.7% (95% CI 44.9 to 88.5). Local recurrence occurred in two patients, both of whom had a pelvic malignancy. The mean Musculoskeletal Tumor Society functional score was 26.9 points at a mean follow-up of 48.2 months (22 to 79).

We suggest that navigation can be helpful during surgery for musculoskeletal tumours; it can maximise the accuracy of resection and minimise the unnecessary sacrifice of normal tissue by providing precise intra-operative three-dimensional radiological information.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 943 - 947
1 Jul 2007
Wong KC Kumta SM Chiu KH Antonio GE Unwin P Leung KS

The use of a navigation system in musculoskeletal tumour surgery enables the integration of pre-operative CT and MRI images to generate a precise three-dimensional anatomical model of the site and the extent of the tumour. We carried out six consecutive resections of musculoskeletal tumour in five patients using an existing commercial computer navigation system. There were three women and two men with a mean age of 41 years (24 to 47). Reconstruction was performed using a tumour prosthesis in three lesions and a vascularised fibular graft in one. No reconstruction was needed in two cases. The mean follow-up was 6.9 months (3.5 to 10). The mean duration of surgery was 28 minutes (13 to 50). Examination of the resected specimens showed clear margins in all the tumour lesions and a resection that was exactly as planned