Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims. The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection. Methods. We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022. Results. Two mechanical failure patterns were identified: fractures in the area of the distal fluted profile (distal stem fracture) and failure of the modular taper (modular fracture). A failure rate of 0.07% was observed for distal stem fracture, and modular fracture rates of 1.74% for the original and 0.013% for the current taper design. Conclusion. A low risk of mechanical failure for both fracture types was observed compared to other known complications in revision hip arthroplasty. In addition, the data show that a design change did significantly reduce the risk of a modular fracture. Cite this article: Bone Joint J 2024;106-B(2):151–157


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 573 - 579
1 May 2020
Krueger DR Guenther K Deml MC Perka C

Aims

We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed.

Methods

All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 338 - 346
1 Aug 2016
MacLeod AR Sullivan NPT Whitehouse MR Gill HS

Objectives. Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection. Materials and Methods. Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences. Results. 36 mm diameter heads had significantly lower pull-off forces than 28 mm heads when impacted at 4 kN and 5 kN (p < 0.001; p < 0.001), but not at 6 kN (p = 0.21). Mean pull-off forces at 4 kN and 5 kN impaction forces were approximately 20% larger for 28 mm heads compared with 36 mm heads. Finite element and analytical models demonstrate that the differences in pull-off strength can be explained by differences in structural rigidity and the resulting interface pressures. Conclusion. This is the first study to show that 36 mm Co-Cr heads have up to 20% lower pull-off connection strength compared with 28 mm heads for equivalent assembly forces. This effect is likely to play a role in the high failure rates of large diameter MoM hips. Cite this article: A. R. MacLeod, N. P. T. Sullivan, M. R. Whitehouse, H. S. Gill. Large-diameter total hip arthroplasty modular heads require greater assembly forces for initial stability. Bone Joint Res 2016;5:338–346. DOI: 10.1302/2046-3758.58.BJR-2016-0044.R1


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 50 - 53
1 Jan 2016
Konan S Garbuz DS Masri BA Duncan CP

Tapered fluted titanium stems are increasingly used for femoral revision arthroplasty. They are available in modular and non-modular forms. Modularity has advantages when the bone loss is severe, the proximal femur is mis shapen or the surgeon is unfamiliar with the implant, but it introduces the risk of fracture of the stem at the junction between it and the proximal body segment. For that reason, and while awaiting intermediate-term results of more recently introduced designs of this junction, non-modularity has attracted attention, at least for straightforward revision cases.

We review the risks and causes of fracture of tapered titanium modular revision stems and present an argument in favour of the more selective use of modular designs.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):50–3.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 324 - 334
1 Apr 2002
Williams HDW Browne G Gie GA Ling RSM Timperley AJ Wendover NA

We describe our experience with the implantation of 325 Exeter Universal hips. The fate of every implant was known. The procedures were undertaken by surgeons of widely differing experience. At follow-up at 12 years, survivorship with revision of the femoral component for aseptic loosening as the endpoint was 100% (95% CI 98 to 100). Survivorship with revision of the acetabular component for aseptic loosening as the endpoint was 96.86% (95% CI 93.1 to 98.9) and that with any reoperation as the endpoint 91.74% (95% CI 87.7 to 95.8). No adverse features have emerged as a consequence of the modular connection between the head and neck of the implant