Rib fracture fixation by orthopaedic and cardiothoracic surgeons has become increasingly popular for the treatment of chest injuries in trauma. The literature, though mainly limited to Level II and III evidence, shows favourable results for operative fixation. In this paper we review the literature and discuss the indications for rib fracture fixation, surgical approaches, choice of implants and the future direction for management. With the advent of NICE
This paper aims to provide evidence-based
The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.
Clinical studies evaluating the effects of vitamin D alone or in combination with calcium on physical function, falls and fractures have been inconsistent. Vitamin D has, however, been the focus of much orthopaedic, trauma and endocrine research. Playing a central role in muscle and bone metabolism, some studies on Vitamin D therapies offer the tantalising suggestion of a reduction in falls and fractures simply with vitamin D supplementation. We review the background and evidence behind vitamin D.
Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA. This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.
Blast and ballistic weapons used on the battlefield cause devastating injuries rarely seen outside armed conflict. These extremely high-energy injuries predominantly affect the limbs and are usually heavily contaminated with soil, foliage, clothing and even tissue from other casualties. Once life-threatening haemorrhage has been addressed, the military surgeon’s priority is to control infection. Combining historical knowledge from previous conflicts with more recent experience has resulted in a systematic approach to these injuries. Urgent debridement of necrotic and severely contaminated tissue, irrigation and local and systemic antibiotics are the basis of management. These principles have resulted in successful healing of previously unsurvivable wounds. Healthy tissue must be retained for future reconstruction, vulnerable but viable tissue protected to allow survival and avascular tissue removed with all contamination. While recent technological and scientific advances have offered some advantages, they must be judged in the context of a hard-won historical knowledge of these wounds. This approach is applicable to comparable civilian injury patterns. One of the few potential benefits of war is the associated improvement in our understanding of treating the severely injured; for this positive effect to be realised these experiences must be shared.