The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts. A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.Aims
Materials and Methods
Partial knee arthroplasty (PKA), either medial
or lateral unicompartmental knee artroplasty (UKA) or patellofemoral arthroplasty
(PFA) are a good option in suitable patients and have the advantages
of reduced operative trauma, preservation of both cruciate ligaments
and bone stock, and restoration of normal kinematics within the
knee joint. However, questions remain concerning long-term survival.
The goal of this review article was to present the long-term results
of medial and lateral UKA, PFA and combined compartmental arthroplasty
for multicompartmental disease. Medium- and long-term studies suggest
reasonable outcomes at ten years with survival greater than 95% in
UKA performed for medial osteoarthritis or osteonecrosis, and similarly
for lateral Cite this article:
Matrix-assisted autologous chondrocyte transplantation (MACT)
has been developed and applied in the clinical practice in the last
decade to overcome most of the disadvantages of the first generation
procedures. The purpose of this systematic review is to document
and analyse the available literature on the results of MACT in the
treatment of chondral and osteochondral lesions of the knee. All studies published in English addressing MACT procedures were
identified, including those that fulfilled the following criteria:
1) level I-IV evidence, 2) measures of functional or clinical outcome,
3) outcome related to cartilage lesions of the knee cartilage.Objectives
Methods
Tranexamic acid (TEA), an inhibitor of fibrinolysis,
reduces blood loss after routine total knee replacement (TKR). However,
controversy persists regarding the dosage and timing of administration
of this drug during surgery. We performed a prospective randomised
controlled study to examine the optimum blood-saving effect of TEA
in minimally invasive TKR. We randomly assigned 151 patients who underwent unilateral minimally
invasive TKR to three groups: 1) a placebo group (50 patients);
2) a one-dose TEA group (52 patients), who received one injection
of TEA (10 mg/kg) intra-operatively on deflation of the tourniquet;
and 3) a two-dose TEA group (49 patients), who received two injections
of TEA (10 mg/kg) given pre-operatively and intra-operatively. Total
blood loss was calculated from the maximum loss of haemoglobin.
All patients were followed clinically for the presence of venous
thromboembolism (VTE). The mean total blood loss was significantly higher in the placebo
group than in the other two groups (1222 ml (845 to 2043) Our prospective randomised controlled study showed that one intra-operative
injection of TEA is effective for blood conservation after minimally
invasive TKR.