Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint 360
Vol. 13, Issue 1 | Pages 22 - 26
1 Feb 2024

The February 2024 Wrist & Hand Roundup360 looks at: Occupational therapy for thumb carpometacarpal osteoarthritis?; Age and patient-reported benefits from operative management of intra-articular distal radius fractures: a meta-regression analysis; Long-term outcomes of nonsurgical treatment of thumb carpometacarpal osteoarthritis: a cohort study; Semi-occlusive dressing versus surgery in fingertip injuries: a randomized controlled trial; Re-fracture in partial union of the scaphoid waist?; The WALANT distal radius fracture: a systematic review; Endoscopic carpal tunnel release with or without hand therapy?; Ten-year trends in the level of evidence in hand surgery.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 612 - 620
21 Aug 2023
Martin J Johnson NA Shepherd J Dias J

Aims. There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. Methods. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress. Results. Overall, 90% to 30% fracture unions demonstrated a small, gradual increase in the Von Mises stress of all fracture patterns (16.0 MPa to 240.5 MPa). All fracture patterns showed a greater increase in Von Mises stress from 30% to 10% partial union (680.8 MPa to 6,288.6 MPa). Conclusion. Previous studies have suggested 25%, 50%, and 75% partial union as sufficient for resuming hand and wrist mobilization. This study shows that 30% union is sufficient to return to normal hand and wrist function in all three fracture patterns. Both 50% and 75% union are unnecessary and increase the risk of post-fracture stiffness. This study has also demonstrated the feasibility of finite element analysis (FEA) in scaphoid waist fracture research. FEA is a sustainable method which does not require the use of finite scaphoid cadavers, hence increasing accessibility into future scaphoid waist fracture-related research. Cite this article: Bone Jt Open 2023;4(8):612–620


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims

Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients.

Methods

A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).


Bone & Joint Research
Vol. 9, Issue 9 | Pages 593 - 600
1 Sep 2020
Lee J Koh Y Kim PS Kang KW Kwak YH Kang K

Aims

Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA.

Methods

Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition.


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims

Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component.

Methods

Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method.

Methods

Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.


Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method.

Methods

Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives

Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts.

Methods

Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective

Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study.

Methods

Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 492 - 497
1 Apr 2015
Ike H Inaba Y Kobayashi N Yukizawa Y Hirata Y Tomioka M Saito T

In this study we used subject-specific finite element analysis to investigate the mechanical effects of rotational acetabular osteotomy (RAO) on the hip joint and analysed the correlation between various radiological measurements and mechanical stress in the hip joint.

We evaluated 13 hips in 12 patients (two men and ten women, mean age at surgery 32.0 years; 19 to 46) with developmental dysplasia of the hip (DDH) who were treated by RAO.

Subject-specific finite element models were constructed from CT data. The centre–edge (CE) angle, acetabular head index (AHI), acetabular angle and acetabular roof angle (ARA) were measured on anteroposterior pelvic radiographs taken before and after RAO. The relationship between equivalent stress in the hip joint and radiological measurements was analysed.

The equivalent stress in the acetabulum decreased from 4.1 MPa (2.7 to 6.5) pre-operatively to 2.8 MPa (1.8 to 3.6) post-operatively (p < 0.01). There was a moderate correlation between equivalent stress in the acetabulum and the radiological measurements: CE angle (R = –0.645, p < 0.01); AHI (R = –0.603, p < 0.01); acetabular angle (R = 0.484, p = 0.02); and ARA (R = 0.572, p < 0.01).

The equivalent stress in the acetabulum of patients with DDH decreased after RAO. Correction of the CE angle, AHI and ARA was considered to be important in reducing the mechanical stress in the hip joint.

Cite this article: Bone Joint J 2015;97-B:492–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.