Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
The aim of this study was to compare a third-generation
cementing procedure for glenoid components with a new technique
for cement pressurisation. In 20 pairs of scapulae, 20 keeled and
20 pegged glenoid components were implanted using either a third-generation
cementing technique (group 1) or a new pressuriser (group 2). Cement penetration
was measured by three-dimensional (3D) analysis of micro-CT scans.
The mean 3D depth of penetration of the cement was significantly
greater in group 2 (p <
0.001). The mean thickness of the cement
mantle for keeled glenoids was 2.50 mm (2.0 to 3.3) in group 1 and
5.18 mm (4.4 to 6.1) in group 2, and for pegged glenoids it was 1.72 mm
(0.9 to 2.3) in group 1 and 5.63 mm (3.6 to 6.4) in group 2. A cement
mantle <
2 mm was detected less frequently in group 2 (p <
0.001). Using the cement pressuriser the proportion of cement mantles
<
2 mm was significantly reduced compared with the third-generation
cementing technique.
Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A