We report the long-term clinical and radiological outcomes of a consecutive series of 200 total ankle arthroplasties (TAAs, 184 patients) at a single centre using the Scandinavian Total Ankle Replacement (STAR) implants. Between November 1993 and February 2000, 200 consecutive STAR prostheses were implanted in 184 patients by a single surgeon. Demographic and clinical data were collected prospectively and the last available status was recorded for further survival analysis. All surviving patients underwent regular clinical and radiological review. Pain and function were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot scoring system. The principal endpoint of the study was failure of the implant requiring revision of one or all of the components. Kaplan–Meier survival curves were generated with 95% confidence intervals and the rate of failure calculated for each year.Aims
Patients and Methods
Total ankle arthroplasty (TAA) surgery is complex and attracts a wide variety of complications. The literature lacks consistency in reporting adverse events and complications. The aim of this article is to provide a comprehensive analysis of each of these complications from a literature review, and to compare them with rates from our Unit, to aid clinicians with the process of informed consent. A total of 278 consecutive total ankle arthroplasties (251 patients), performed by four surgeons over a six-year period in Wrightington Hospital (Wigan, United Kingdom) were prospectively reviewed. There were 143 men and 108 women with a mean age of 64 years (41 to 86). The data were recorded on each follow-up visit. Any complications either during initial hospital stay or subsequently reported on follow-ups were recorded, investigated, monitored, and treated as warranted. Literature search included the studies reporting the outcomes and complications of TAA implants.Aims
Patients and Methods
The purpose of this study was to compare the clinical and radiographic
outcomes of total ankle arthroplasty (TAA) in patients with pre-operatively
moderate and severe arthritic varus ankles to those achieved for
patients with neutral ankles. A total of 105 patients (105 ankles), matched for age, gender,
body mass index, and follow-up duration, were divided into three
groups by pre-operative coronal plane tibiotalar angle; neutral
(<
5°), moderate (5° to 15°) and severe (>
15°) varus deformity.
American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot
score, a visual analogue scale (VAS), and Short Form (SF)-36 score
were used to compare the clinical outcomes after a mean follow-up period
of 51 months (24 to 147).Aims
Patients and Methods
The purpose of this study was to evaluate the
change in sagittal tibiotalar alignment after total ankle arthroplasty (TAA)
for osteoarthritis and to investigate factors affecting the restoration
of alignment. This retrospective study included 119 patients (120 ankles) who
underwent three component TAA using the Hintegra prosthesis. A total
of 63 ankles had anterior displacement of the talus before surgery
(group A), 49 had alignment in the normal range (group B), and eight
had posterior displacement of the talus (group C). Ankles in group
A were further sub-divided into those in whom normal alignment was
restored following TAA (41 ankles) and those with persistent displacement
(22 ankles). Radiographic and clinical results were assessed. Pre-operatively, the alignment in group A was significantly more
varus than that in group B, and the posterior slope of the tibial
plafond was greater (p <
0.01 in both cases). The posterior slope
of the tibial component was strongly associated with restoration
of alignment: ankles in which the alignment was restored had significantly
less posterior slope (p <
0.001). An anteriorly translated talus was restored to a normal position
after TAA in most patients. We suggest that surgeons performing
TAA using the Hintegra prosthesis should aim to insert the tibial
component at close to 90° relative to the axis of the tibia, hence
reducing posterior soft-tissue tension and allowing restoration
of normal tibiotalar alignment following surgery. Cite this article:
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
The aim of this study was to compare the outcome of bilateral sequential total ankle replacement (TAR) with that of unilateral TAR. We reviewed 23 patients who had undergone sequential bilateral TAR under a single anaesthetic and 46 matched patients with a unilateral TAR. There were no significant pre-operative differences between the two groups in terms of age, gender, body mass index, American Society of Anaesthesiologists classification and aetiology of the osteoarthritis of the ankle. Clinical and radiological follow-up was carried out at four months, one and two years. After four months, patients with simultaneous bilateral TAR reported a significantly higher mean pain score than those with a unilateral TAR. The mean American Orthopaedic Foot and Ankle Society hindfoot score and short-form 36 physical component summary score were better in the unilateral group. However, this difference disappeared at the one-and two-year follow-ups. Bilateral sequential TAR under one anaesthetic can be offered to patients with bilateral severe ankle osteoarthritis. However, they should be informed of the long recovery period.
We describe the early results of a prospective study of 100 total ankle replacements (96 patients) at a single centre using the Mobility Total Ankle Replacement. At final review, six patients had died and five ankles (5%) had been revised, two by fusion and three by exchange of components. All remaining patients were reviewed at a minimum of three years. The mean follow-up was 43 months (4 to 63). The three-year survival was 97% (95% confidence interval (CI) 91 to 99). The four-year survival was 93.6% (95% CI 84.7 to 97.4). The portion of bony interface that was visible on plain radiograph was divided into 15 zones and a radiolucent line or osteolytic cavity was seen in one zone in 14 ankles. It was not seen in more than one zone. In five ankles it was >
10 mm in width. This study suggests that the early outcome of ankle replacement is comparable to that of other total joint replacements.
We present the outcomes in 38 consecutive patients who had total ankle replacement using the Ankle Evolution System with a minimum follow-up of four years. Pain and function were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) score and regular standardised anteroposterior and lateral weight-bearing radiographs were obtained. Patient satisfaction and complications were recorded and the survival of the implants was demonstrated by the Kaplan-Meier method. The mean follow-up was for 57.8 months (48 to 80). The cumulative survival rate at six years was 94.7% (95% confidence interval 80.3 to 98.7). The mean total AOFAS score was 88.1 (53 to 100). The mean score for pain was 35.8 (20 to 40). Ten patients presented with edge-loading of whom nine had corrective surgery. Two ankles were revised, one to an arthrodesis and the other to replace the tibial component. Nine patients showed radiological evidence of osteolysis. They had minimal non-progressive symptoms and further surgery was not undertaken. Nevertheless, the concerns about osteolysis led to the implant being withdrawn by the manufacturer. The medium-term results of the ankle evolution system ankle replacement are satisfactory with high patient satisfaction, but the rate of osteolysis is of some concern. The long-term benefit of this procedure has yet to be determined.
We carried out 123 consecutive total ankle replacements in 111 patients with a mean follow-up of four years (2 to 8). Patients with a hindfoot deformity of up to 10° (group A, 91 ankles) were compared with those with a deformity of 11° to 30° (group B, 32 ankles). There were 18 failures (14.6%), with no significant difference in survival between groups A and B. The clinical outcome as measured by the post-operative American Orthopaedic Foot and Ankle Surgeons score was significantly better in group B (p = 0.036). There was no difference between the groups regarding the post-operative range of movement and complications. Correction of the hindfoot deformity was achieved to within 5° of neutral in 27 ankles (84%) of group B patients. However, gross instability was the most common mode of failure in group B. This was not adequately corrected by reconstruction of the lateral ligament. Total ankle replacement can safely be performed in patients with a hindfoot deformity of up to 30°. The importance of adequate correction of alignment and instability is highlighted.
We describe the medium-term results of a prospective study of 200 total ankle replacements at a single-centre using the Scandinavian Total Ankle Replacement. A total of 24 ankles (12%) have been revised, 20 by fusion and four by further replacement and 27 patients (33 ankles) have died. All the surviving patients were seen at a minimum of five years after operation. The five-year survival was 93.3% (95% confidence interval (CI) 89.8 to 96.8) and the ten-year survival 80.3% (95% CI 71.0 to 89.6). Anterior subluxation of the talus, often seen on the lateral radiograph in osteoarthritic ankles, was corrected and, in most instances, the anatomical alignment was restored by total ankle replacement. The orientation of the tibial component, as seen on the lateral radiograph, also affects the position of the talus and if not correct can hold the talus in an abnormal anterior position. Subtalar arthritis may continue to progress after total ankle replacement. Our results are similar to those published previously.