header advert
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 4, Issue 5 | Pages 84 - 92
1 May 2015
Hamamura K Nishimura A Iino T Takigawa S Sudo A Yokota H

Objectives

Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA).

Methods

OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 141 - 146
1 Nov 2012
Minas T

Hyaline articular cartilage has been known to be a troublesome tissue to repair once damaged. Since the introduction of autologous chondrocyte implantation (ACI) in 1994, a renewed interest in the field of cartilage repair with new repair techniques and the hope for products that are regenerative have blossomed. This article reviews the basic science structure and function of articular cartilage, and techniques that are presently available to effect repair and their expected outcomes.