Modular dual-mobility (DM) articulations are increasingly used during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS)-MRI abnormalities with serum metal ion levels in patients with DM articulations. A total of 45 patients (50 hips) with a modular DM articulation were included with mean follow-up of 3.7 years (SD 1.2). Enrolled patients with an asymptomatic, primary THA and DM articulation with over two years’ follow-up underwent MARS-MRI. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.Aims
Methods
Aims. In metal-on-polyethylene (MoP) total hip arthroplasty (THA), large metal femoral heads have been used to increase stability and reduce the risk of dislocation. The increased size of the femoral head can, however, lead to increased
The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection. We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.Aims
Methods
Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point.Aims
Methods
Aims.
A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade. Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.Aims
Methods
Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors. Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.Aims
Methods
Aims. This study investigates head-neck
We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty. In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.Aims
Methods
Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy.Aims
Methods
Modular dual mobility (MDM) acetabular components are often used with the aim of reducing the risk of dislocation in revision total hip arthroplasty (THA). There is, however, little information in the literature about its use in this context. The aim of this study, therefore, was to evaluate the outcomes in a cohort of patients in whom MDM components were used at revision THA, with a mean follow-up of more than five years. Using the database of
a single academic centre, 126 revision THAs in 117 patients using a single
design of an MDM acetabular component were retrospectively reviewed. A total of 94 revision THAs in 88 patients with a mean follow-up of 5.5 years were included in the study. Survivorship was analyzed with the endpoints of dislocation, reoperation for dislocation, acetabular revision for aseptic loosening, and acetabular revision for any reason. The secondary endpoints were surgical complications and the radiological outcome.Aims
Methods
Adverse local tissue reactions associated with abnormal wear considerably slowed down the general use of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), now limited to a few specialized centres. In this study, we provide the clinical results of 400 consecutive MoM HRAs implanted more than 20 years ago in one such centre. A total of 355 patients (400 hips) were treated with Conserve Plus HRA between November 1996 and November 2000. There were 96 female (27%) and 259 male patients (73%). Their mean age was 48.2 years (SD 10.9). The University of California, Los Angeles (UCLA) hip scores and 12-item Short Form Survey (SF-12) quality of life scores were reported. Survivorship was assessed using Kaplan-Meier analyses.Aims
Methods
The Exeter V40 cemented femoral stem was first introduced in 2000. The largest single-centre analysis of this implant to date was published in 2018 by Westerman et al. Excellent results were reported at a minimum of ten years for the first 540 cases performed at the designer centre in the Exeter NHS Trust, with stem survivorship of 96.8%. The aim of this current study is to report long-term outcomes and survivorship for the Exeter V40 stem in a non-designer centre. All patients undergoing primary total hip arthroplasty using the Exeter V40 femoral stem between 1 January 2005 and 31 January 2010 were eligible for inclusion. Data were collected prospectively, with routine follow-up at six to 12 months, two years, five years, and ten years. Functional outcomes were assessed using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. Outcome measures included data on all components in situ beyond ten years, death occurring within ten years with components in situ, and all-cause revision surgery.Aims
Methods
Hip resurfacing arthroplasty (HRA) is typically indicated for young and active patients. Due to the longevity of arthroplasty, these patients are likely to undergo revision surgery during their lifetime. There is a paucity of information on the long-term outcome of revision surgeries performed after failed HRA. The aim of our study was to provide survivorship data as well as clinical scores after HRA revisions. A total of 42 patients (43 hips) were revised after HRA at our centre to a variety of devices, including four HRA and 39 total hip arthroplasties (THAs). In addition to perioperative complications, University of California, Los Angeles (UCLA) hip scores and 12-Item Short-Form Health Survey questionnaire (SF-12) quality of life scores were collected at follow-up visits after the primary HRA and after revision surgery.Aims
Methods
Modular dual-mobility constructs reduce the risk of dislocation after revision total hip arthroplasty (THA). However, questions about metal ions from the cobalt-chromium (CoCr) liner persist, and are particularly germane to patients being revised for adverse local tissue reactions (ALTR) to metal. We determined the early- to mid-term serum Co and Cr levels after modular dual-mobility components were used in revision and complex primary THAs, and specifically included patients revised for ALTR. Serum Co and Cr levels were measured prospectively in 24 patients with a modular dual-mobility construct and a ceramic femoral head. Patients with CoCr heads or contralateral THAs with CoCr heads were excluded. The mean age was 63 years (35 to 83), with 13 patients (54%) being female. The mean follow-up was four years (2 to 7). Indications for modular dual-mobility were prosthetic joint infection treated with two-stage exchange and subsequent reimplantation (n = 8), ALTR revision (n = 7), complex primary THA (n = 7), recurrent instability (n = 1), and periprosthetic femoral fracture (n = 1). The mean preoperative Co and Cr in patients revised for an ALTR were 29.7 μg/l (2 to 146) and 21.5 μg/l (1 to 113), respectively.Aims
Patients and Methods
The present study investigated the five-year interval changes in pseudotumours and measured serum metal ions at long-term follow-up of a previous report of 28 mm diameter metal-on-metal (MoM) total hip arthroplasty (THA). A total of 72 patients (mean age 46.6 years (37 to 55); 43 men, 29 women; 91 hips) who underwent cementless primary MoM THA with a 28 mm modular head were included. The mean follow-up duration was 20.3 years (18 to 24). All patients had CT scans at a mean 15.1 years (13 to 19) after the index operation and subsequent follow-up at a mean of 20.2 years (18 to 24). Pseudotumour volume, type of mass, and new-onset pseudotumours were evaluated using CT scanning. Clinical outcomes were assessed by Harris Hip Score (HHS) and the presence of groin pain. Serum metal ion (cobalt (Co) and chromium (Cr)) levels were measured at the latest follow-up.Aims
Patients and Methods
This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA). Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).Aims
Patients and Methods
The primary aim of this independent prospective randomised trial
was to compare serum metal ion levels for ceramic-on-metal (CoM)
and metal-on-metal (MoM) bearing surfaces in total hip arthroplasty
(THA). Our one-year results demonstrated elevation in metal ion
levels above baseline with no significant difference between the
CoM and MoM groups. This paper reviews the five-year data. The implants used in each patient differed only in respect to
the type of femoral head (ceramic or metal). At five-year follow-up
of the 83 enrolled patients, data from 67 (36 CoM, 31 MoM) was available
for comparison.Aims
Patients and Methods
Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression.Objectives
Methods
The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables.Objectives
Methods
Our first aim was to determine whether there are significant
changes in the level of metal ions in the blood at mid-term follow-up,
in patients with an Articular Surface Replacement (ASR) arthroplasty.
Secondly, we sought to identify risk factors for any increases. The study involved 435 patients who underwent unilateral, metal-on-metal
(MoM) hip resurfacing (HRA) or total hip arthroplasty (THA). These
patients all had one measurement of the level of metal ions in the
blood before seven years had passed post-operatively (early evaluation)
and one after seven years had passed post-operatively (mid-term evaluation).
Changes in ion levels were tested using a Wilcoxon signed-rank test.
We identified subgroups at the highest risk of increase using a
multivariable linear logistic regression model.Aims
Patients and Methods
Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg
Objectives. This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following
The use of large-diameter metal-on-metal (MoM)
components in total hip arthroplasty (THA) is associated with an increased
risk of early failure due to adverse local tissue reaction to metal
debris (ARMD) in response to the release of metal ions from the
bearing couple and/or head-neck
There is increasing global awareness of adverse
reactions to metal debris and elevated serum metal ion concentrations
following the use of second generation metal-on-metal total hip
arthroplasties. The high incidence of these complications can be
largely attributed to corrosion at the head-neck interface. Severe
corrosion of the taper is identified most commonly in association
with larger diameter femoral heads. However, there is emerging evidence
of varying levels of corrosion observed in retrieved components
with smaller diameter femoral heads. This same mechanism of galvanic
and mechanically-assisted crevice corrosion has been observed in
metal-on-polyethylene and ceramic components, suggesting an inherent
biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers
clinicians and researchers must understand regarding
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.
There are many guidelines that help direct the management of
patients with metal-on-metal (MOM) hip arthroplasties. We have undertaken
a study to compare the management of patients with MOM hip arthroplasties in
different countries. Six international tertiary referral orthopaedic centres were
invited to participate by organising a multi-disciplinary team (MDT)
meeting, consisting of two or more revision hip arthroplasty surgeons
and a musculoskeletal radiologist. A full clinical dataset including
history, blood tests and imaging for ten patients was sent to each
unit, for discussion and treatment planning. Differences in the
interpretation of findings, management decisions and rationale for
decisions were compared using quantitative and qualitative methods.Aims
Methods
We present a case series of ten metal-on-polyethylene total hip
arthroplasties (MoP THAs) with delayed dislocation associated with
unrecognised adverse local tissue reaction due to corrosion at the
trunnion and pseudotumour formation. The diagnosis was not suspected in nine of the ten patients (six
female/four male; mean age 66 years), despite treatment in a specialist
unit (mean time from index surgery to revision was 58 months, 36
to 84). It was identified at revision surgery and subsequently confirmed
by histological examination of resected tissue. Pre-operative assessment
and culture results ruled out infection. A variety of treatment
strategies were used, including resection of the pseudotumour and
efforts to avoid recurrent dislocation. Aims
Methods
The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for material loss and wear at the taper junctions through
taper wear analysis. Deviations in taper geometries between revised
and pristine modular neck tapers were determined using high resolution
tactile measurements. A new algorithm was developed and validated
to allow the quantitative analysis of material loss, complementing
the standard visual inspection currently used. The algorithm was applied to a sample of 27 retrievals ( Cite this article:
Tribocorrosion at the head–neck taper interface
– so-called ‘taperosis’ – may be a source of metal ions and particulate
debris in metal-on-polyethylene total hip arthroplasty (THA). We examined the effect of femoral head length on fretting and
corrosion in retrieved head–neck tapers Head length was observed to affect fretting (p = 0.03), with
28 mm + 8 mm femoral heads showing greater total fretting scores
than all other head lengths. The central zone of the femoral head
bore taper was subject to increased fretting damage (p = 0.01),
regardless of head length or stem offset. High-offset femoral stems
were associated with greater total fretting of the bore taper (p
= 0.04). Increased fretting damage is seen with longer head lengths and
high-offset femoral stems, and occurs within a central concentric
zone of the femoral head bore taper. Further investigation is required
to determine the effect of increased head size, and variations in
head–neck taper design. Cite this article:
Dislocation remains among the most common complications
of, and reasons for, revision of both primary and revision total
hip replacements (THR). Hence, there is great interest in maximising
stability to prevent this complication. Head size has been recognised
to have a strong influence on the risk of dislocation post-operatively.
As femoral head size increases, stability is augmented, secondary
to an increase in impingement-free range of movement. Larger head
sizes also greatly increase the ‘jump distance’ required for the
head to dislocate in an appropriately positioned cup. Level-one
studies support the use of larger diameter heads as they decrease
the risk of dislocation following primary and revision THR. Highly cross-linked
polyethylene has allowed us to increase femoral head size, without
a marked increase in wear. However, the thin polyethylene liners
necessary to accommodate larger heads may increase the risk of liner
fracture and larger heads have also been implicated in causing soft-tissue
impingement resulting in groin pain. Larger diameter heads also
impart larger forces on the femoral trunnion, which may contribute
to corrosion, metal release, and adverse local tissue reactions.
Alternative large bearings including large ceramic heads and dual
mobility bearings may mitigate some of these risks, and several
of these devices have been used with clinical success. Cite this article:
Large ceramic femoral heads offer several advantages
that are potentially advantageous to patients undergoing both primary
and revision total hip replacement. Many high-quality studies have
demonstrated the benefit of large femoral heads in reducing post-operative instability.
Ceramic femoral heads may also offer an advantage in reducing polyethylene wear
that has been reported in vitro and is starting
to become clinically apparent in mid-term clinical outcome studies.
Additionally, the risk of
Total hip replacement (THR) after acetabular
fracture presents unique challenges to the orthopaedic surgeon.
The majority of patients can be treated with a standard THR, resulting
in a very reasonable outcome. Technical challenges however include
infection, residual pelvic deformity, acetabular bone loss with
ununited fractures, osteonecrosis of bone fragments, retained metalwork,
heterotopic ossification, dealing with the sciatic nerve, and the
difficulties of obtaining long-term acetabular component fixation.
Indications for an acute THR include young patients with both femoral
head and acetabular involvement with severe comminution that cannot
be reconstructed, and the elderly, with severe bony comminution.
The outcomes of THR for established post-traumatic arthritis include
excellent pain relief and functional improvements. The use of modern
implants and alternative bearing surfaces should improve outcomes
further. Cite this article:
A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
The differential diagnosis of the painful total
hip arthroplasty (resurfacing or total hip) includes infection,
failure of fixation (loosening), tendinitis, bursitis, synovitis,
adverse local tissue reaction (ALTR) to cobalt-chromium alloys,
and non-hip issues, such as spinal disorders, hernia, gynecologic,
and other pelvic pain. Assuming that the hip is the source of pain,
the first level question is prosthetic or non-prosthetic pain generator?
The second level prosthetic question is septic or aseptic? The third
level question (aseptic hips) is well-fixed or loose? ALTR is best
diagnosed by cross-sectional imaging. Successful treatment is dependent
on correct identification and elimination of the pain generator.
Treatment recommendations for ALTR and
We present a series of 35 patients (19 men and
16 women) with a mean age of 64 years (36.7 to 75.9), who underwent
total hip replacement using the ESKA dual-modular short stem with
metal on-polyethylene bearing surfaces. This implant has a modular
neck section in addition to the modular head. Of these patients,
three presented with increasing post-operative pain due to pseudotumour
formation that resulted from corrosion at the modular neck-stem
junction. These patients underwent further surgery and aseptic lymphocytic
vaculitis associated lesions were demonstrated on histological analysis. Retrieval analysis of two modular necks showed corrosion at the
neck-stem taper. Blood cobalt and chromium levels were measured
at a mean of nine months (3 to 28) following surgery. These were
compared with the levels in seven control patients (three men and
four women) with a mean age of 53.4 years (32.1 to 64.1), who had
an identical prosthesis and articulation but with a prosthesis that
had no modularity at neck-stem junction. The mean blood levels of
cobalt in the study group were raised at 50.75 nmol/l (5 to 145)
compared with 5.6 nmol/l (2 to 13) in control patients. Corrosion at neck-stem tapers has been identified as an important
source of metal ion release and pseudotumour formation requiring
revision surgery. Finite element modelling of the dual modular stem
demonstrated high stresses at the modular stem-neck junction. Dual
modular cobalt-chrome hip prostheses should be used with caution
due to these concerns.