Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.
In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.Objectives
Methods
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
This preliminary study evaluates a combination
of bone morphogenetic protein (BMP)-7 and non-vascularised autologous
fibular grafting (AFG) for the treatment of osteonecrosis of the
femoral head. BMP-7/AFG combination was applied in seven pre-collapse femoral
heads (five Steinberg stage II, two stage III) in six patients.
Pre- and post-operative evaluation included clinical (Harris hip
score (HHS), visual analogue scale (VAS) for pain) and radiological
assessment (radiographs, quantitative CT) at a mean follow-up of
4 years (2 to 5.5). A marked improvement of function (mean HHS increase of 49.2)
and decrease of pain level (mean VAS decrease of 5) as well as retention
of the sphericity of the femoral head was noted in five hips at
the latest follow-up, while signs of consolidation were apparent
from the third post-operative month. One patient (two hips) required
bilateral total hip replacement at one year post-operatively. In
the series as a whole, quantitative-CT evaluation revealed similar densities
between affected and normal bone. Heterotopic ossification was observed
in four hips, without compromise of the clinical outcome. In this limited series AFG/BMP-7 combination proved a safe and
effective method for the treatment of femoral head osteonecrosis,
leading to early consolidation of the AFG and preventing collapse
in five of seven hips, while the operative time and post-operative
rehabilitation period were much shorter compared with free vascularised fibular
grafts. Cite this article:
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant
We describe a 13-year-old boy with atrophic tibial pseudarthrosis associated with neurofibromatosis who had undergone nine unsuccessful operations. Eventually, union was obtained by the use of