Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 11, Issue 10 | Pages 715 - 722
10 Oct 2022
Matsuyama Y Nakamura T Yoshida K Hagi T Iino T Asanuma K Sudo A

Aims. Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases. Methods. We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated. Results. The viability of LM8, MDA-MB-231, and PC-3 cells strongly decreased at AO concentration of 1.0 μg/ml and a radiation dose of 5 Gy. In xenograft mouse model, the AO-RDT also showed a strong cytocidal effect on tumour at the backside in osteosarcoma, breast cancer, and prostate cancer. AO-RDT treatment was more effective for tumour control than radiotherapy in breast cancer. Conclusion. AO-RDT was effective in preventing the proliferation of osteosarcoma, breast cancer, and prostate cancer cell lines in vitro. The reduction in tumour volume by AO-RDT was also confirmed in vivo. Cite this article: Bone Joint Res 2022;11(10):715–722


Bone & Joint Research
Vol. 13, Issue 4 | Pages 157 - 168
4 Apr 2024
Lin M Chen G Yu H Hsu P Lee C Cheng C Wu S Pan B Su B

Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results. Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion. Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion. Cite this article: Bone Joint Res 2024;13(4):157–168


Bone & Joint Research
Vol. 10, Issue 5 | Pages 310 - 320
3 May 2021
Choi J Lee YS Shim DM Lee YK Seo SW

Aims

Bone metastasis ultimately occurs due to a complex multistep process, during which the interactions between cancer cells and bone microenvironment play important roles. Prior to colonization of the bone, cancer cells must succeed through a series of steps that will allow them to gain migratory and invasive properties; epithelial-to-mesenchymal transition (EMT) is known to be integral here. The aim of this study was to determine the effects of G protein subunit alpha Q (GNAQ) on the mechanisms underlying bone metastasis through EMT pathway.

Methods

A total of 80 tissue samples from patients who were surgically treated during January 2012 to December 2014 were used in the present study. Comparative gene analysis revealed that the GNAQ was more frequently altered in metastatic bone lesions than in primary tumour sites in lung cancer patients. We investigated the effects of GNAQ on cell proliferation, migration, EMT, and stem cell transformation using lung cancer cells with GNAQ-knockdown. A xenograft mouse model tested the effect of GNAQ using micro-CT analyses and histological analyses.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 821 - 826
1 Nov 2020
Hagi T Nakamura T Kita K Iino T Asanuma K Sudo A

Aims

Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines.

Methods

We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 186 - 193
1 Mar 2017
Choi YJ Lee YS Lee HW Shim DM Seo SW

Objectives

Eukaryotic translation initiation factor 3 (eIF3) is a multi-subunit complex that plays a critical role in translation initiation. Expression levels of eIF3 subunits are elevated or decreased in various cancers, suggesting a role for eIF3 in tumorigenesis. Recent studies have shown that the expression of the eIF3b subunit is elevated in bladder and prostate cancer, and eIF3b silencing inhibited glioblastoma growth and induced cellular apoptosis. In this study, we investigated the role of eIF3b in the survival of osteosarcoma cells.

Methods

To investigate the effect of eIF3b on cell viability and apoptosis in osteosarcoma cells, we first examined the silencing effect of eIF3b in U2OS cells. Cell viability and apoptosis were examined by the Cell Counting Kit-8 (CCK-8) assay and Western blot, respectively. We also performed gene profiling to identify genes affected by eIF3b silencing. Finally, the effect of eIF3b on cell viability and apoptosis was confirmed in multiple osteosarcoma cell lines.


Bone & Joint Research
Vol. 3, Issue 4 | Pages 101 - 107
1 Apr 2014
Edmondson MC Day R Wood D

Objectives

The most concerning infection of allografts and operative procedures is methicillin resistant Staphylococcus aureus (MRSA) and no current iontophoresed antibiotics effectively combat this microbe. It was initially hypothesised that iontophoresis of vancomycin through bone would not be effective due to its large molecular size and lack of charge. The aim of this study was to determine whether this was a viable procedure and to find the optimum conditions for its use.

Methods

An iontophoresis cell was set up with varying concentrations of Vancomycin within the medulla of a section of sheep tibia, sealed from an external saline solution. The cell was run for varying times, Vancomycin concentrations and voltages, to gain information on optimisation of conditions for impregnating the graft. Each graft was then sectioned and dust ground from the exposed surface. The dust was serially washed to extract the Vancomycin and concentrations measured and plotted for all variables tested.