Objectives. The National Hip Fracture Database (NHFD) publishes hospital-level risk-adjusted mortality rates following hip fracture surgery in England, Wales and Northern Ireland. The performance of the risk model used by the NHFD was compared with the widely-used Nottingham Hip Fracture Score. Methods. Data from 94 hospitals on patients aged 60 to 110 who had hip fracture surgery between May 2013 and July 2013 were analysed. Data were linked to the Office for National Statistics (ONS) death register to calculate the 30-day mortality rate. Risk of death was predicted for each patient using the NHFD and Nottingham models in a development dataset using logistic regression to define the models’ coefficients. This was followed by testing the performance of these refined models in a second validation dataset. Results. The 30-day mortality rate was 5.36% in the validation dataset (n = 3861), slightly lower than the 6.40% in the development dataset (n = 4044). The NHFD and Nottingham models showed a slightly lower discrimination in the validation dataset compared with the development dataset, but both still displayed moderate discriminative power (c-statistic for NHFD = 0.71, 95% confidence interval (CI) 0.67 to 0.74; Nottingham model = 0.70, 95% CI 0.68 to 0.75). Both models defined similar ranges of predicted mortality risk (1% to 18%) in assessment of calibration. Conclusions. Both models have limitations in predicting mortality for individual patients after hip fracture surgery, but the NHFD risk adjustment model performed as well as the widely-used Nottingham
Objectives. Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. Methods. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression. Results. Intra-operative complications occurred in 6.0% (n = 11) of the 185 cases. The cumulative four-year patient survival rate was 98.2% (95% CI 92.9 to 99.5). Re-revision surgery was performed in 13.5% (n = 25) of hips at a mean time of 1.2 years (0.1 to 3.1 years) following ARMD revision. Infection (32%; n = 8), dislocation/subluxation (24%; n = 6), and aseptic loosening (24%; n = 6) were the most common re-revision indications. The cumulative four-year implant survival rate was 83.8% (95% CI 76.7 to 88.9). Multivariable analysis identified three predictors of re-revision: multiple revision indications (hazard ratio (HR) = 2.78; 95% CI 1.03 to 7.49; p = 0.043); selective component revisions (HR = 5.76; 95% CI 1.28 to 25.9; p = 0.022); and ceramic-on-polyethylene revision bearings (HR = 3.08; 95% CI 1.01 to 9.36; p = 0.047). Conclusions. Non-MoMHAs revised for ARMD have a high short-term risk of re-revision, with important predictors of future re-revision including selective component revision, multiple revision indications, and ceramic-on-polyethylene revision bearings. Our findings may help counsel patients about the risks of ARMD revision, and guide reconstructive decisions. Future studies attempting to validate the predictors identified should also assess the effects of implant design (metallurgy and modularity), given that this was an important study limitation potentially influencing the reported
Using a simple classification method, we aimed to estimate the collapse rate due to osteonecrosis of the femoral head (ONFH) in order to develop treatment guidelines for joint-preserving surgeries. We retrospectively analyzed 505 hips from 310 patients (141 men, 169 women; mean age 45.5 years Objectives
Methods
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.