Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 14, Issue 1 | Pages 46 - 57
24 Jan 2025
Abdulhadi Alagha M Cobb J Liddle AD Malchau H Rolfson O Mohaddes M

Aims. While cementless fixation offers potential advantages over cemented fixation, such as a shorter operating time, concerns linger over its higher cost and increased risk of periprosthetic fractures. If the risk of fracture can be forecasted, it would aid the shared decision-making process related to cementless stems. Our study aimed to develop and validate predictive models of periprosthetic femoral fracture (PPFF) necessitating revision and reoperation after elective total hip arthroplasty (THA). Methods. We included 154,519 primary elective THAs from the Swedish Arthroplasty Register (SAR), encompassing 21 patient-, surgical-, and implant-specific features, for model derivation and validation in predicting 30-day, 60-day, 90-day, and one-year revision and reoperation due to PPFF. Model performance was tested using the area under the curve (AUC), and feature importance was identified in the best-performing algorithm. Results. The Lasso regression excelled in predicting 30-day revisions (area under the receiver operating characteristic curve (AUC) = 0.85), while the Gradient Boosting Machine (GBM) model outperformed other models by a slight margin for all remaining endpoints (AUC range: 0.79 to 0.86). Predictive factors for revision and reoperation were identified, with patient features such as increasing age, higher American Society of Anesthesiologists grade (> III), and World Health Organization obesity classes II to III associated with elevated risks. A preoperative diagnosis of idiopathic necrosis increased revision risk. Concerning implant design, factors such as cementless femoral fixation, reverse-hybrid fixation, hip resurfacing, and small (< 35 mm) or large (> 52 mm) femoral heads increased both revision and reoperation risks. Conclusion. This is the first study to develop machine-learning models to forecast the risk of PPFF necessitating secondary surgery. Future studies are required to externally validate our algorithm and assess its applicability in clinical practice. Cite this article: Bone Joint Res 2025;14(1):46–57


Bone & Joint Research
Vol. 13, Issue 10 | Pages 588 - 595
17 Oct 2024
Breu R Avelar C Bertalan Z Grillari J Redl H Ljuhar R Quadlbauer S Hausner T

Aims

The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support.

Methods

The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams.

Cite this article: Bone Joint Res 2024;13(9):507–512.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 623 - 632
5 Sep 2020
Jayadev C Hulley P Swales C Snelling S Collins G Taylor P Price A

Aims

The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule synovial fluid analysis with machine learning to produce an accurate diagnostic biomarker model for end-stage knee OA (esOA).

Methods

Synovial fluid (SF) from patients with esOA, non-OA knee injury, and inflammatory knee arthritis were analyzed for 35 potential markers using immunoassays. Partial least square discriminant analysis (PLS-DA) was used to derive a biomarker model for cohort classification. The ability of the biomarker model to diagnose esOA was validated by identical wide-spectrum SF analysis of a test cohort of ten patients with esOA.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 808 - 820
1 Nov 2020
Trela-Larsen L Kroken G Bartz-Johannessen C Sayers A Aram P McCloskey E Kadirkamanathan V Blom AW Lie SA Furnes ON Wilkinson JM

Aims

To develop and validate patient-centred algorithms that estimate individual risk of death over the first year after elective joint arthroplasty surgery for osteoarthritis.

Methods

A total of 763,213 hip and knee joint arthroplasty episodes recorded in the National Joint Registry for England and Wales (NJR) and 105,407 episodes from the Norwegian Arthroplasty Register were used to model individual mortality risk over the first year after surgery using flexible parametric survival regression.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 550 - 556
1 Sep 2017
Tsang C Boulton C Burgon V Johansen A Wakeman R Cromwell DA

Objectives

The National Hip Fracture Database (NHFD) publishes hospital-level risk-adjusted mortality rates following hip fracture surgery in England, Wales and Northern Ireland. The performance of the risk model used by the NHFD was compared with the widely-used Nottingham Hip Fracture Score.

Methods

Data from 94 hospitals on patients aged 60 to 110 who had hip fracture surgery between May 2013 and July 2013 were analysed. Data were linked to the Office for National Statistics (ONS) death register to calculate the 30-day mortality rate. Risk of death was predicted for each patient using the NHFD and Nottingham models in a development dataset using logistic regression to define the models’ coefficients. This was followed by testing the performance of these refined models in a second validation dataset.