Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
The objective of this study was to perform a meta-analysis of all randomised controlled trials (RCTs) comparing surgical and non-surgical management of fractures of the proximal humerus, and to determine whether further analyses based on complexity of fracture, or the type of surgical intervention, produced disparate findings on patient outcomes. A systematic review of the literature was performed identifying all RCTs that compared surgical and non-surgical management of fractures of the proximal humerus. Meta-analysis of clinical outcomes was performed where possible. Subgroup analysis based on the type of fracture, and a sensitivity analysis based on the type of surgical intervention, were also performed.Objectives
Methods
The aim of this study was to determine whether there is any significant
difference in temporal measurements of pain, function and rates
of re-tear for arthroscopic rotator cuff repair (RCR) patients compared
with those patients undergoing open RCR. This study compared questionnaire- and clinical examination-based
outcomes over two years or longer for two series of patients who
met the inclusion criteria: 200 open RCR and 200 arthroscopic RCR
patients. All surgery was performed by a single surgeon. Objectives
Methods