Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium. Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia.Aims
Methods
Objectives. A patient-centred approach, usually achieved through shared decision
making, has the potential to help improve decision making around
knee arthroplasty surgery. However, such an approach requires an
understanding of the factors involved in patient decision making.
This review’s objective is to systematically examine the qualitative literature
surrounding patients’ decision making in knee arthroplasty. Methods. A systematic literature review using Medline and Embase was conducted
to identify qualitative studies that examined patients’ decision
making around knee arthroplasty. An aggregated account of what is
known about patients’ decision making in knee arthroplasties is
provided. Results. Seven studies with 234 participants in interviews or focus groups
are included. Ten themes are replicated across studies, namely:
expectations of surgery; coping mechanisms; relationship with clinician;
fear; pain; function; psychological implications; social network;
previous
The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position.Aims
Methods
The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases.Objectives
Methods
The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed.Objectives
Methods
Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.Objectives
Methods
Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs.Objectives
Methods
Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.Objectives
Materials and Methods
An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans.Objectives
Materials and Methods
The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for Objectives
Methods
Because there have been no standard methods to determine pre-operatively
the thickness of resection of the proximal tibia in unicompartmental
knee arthroplasty (UKA), information about the relationship between
the change of limb alignment and the joint line elevation would
be useful for pre-operative planning. The purpose of this study
was to clarify the correlation between the change of limb alignment
and the change of joint line height at the medial compartment after
UKA. A consecutive series of 42 medial UKAs was reviewed retrospectively.
These patients were assessed radiographically both pre- and post-operatively
with standing anteroposterior radiographs. The thickness of bone
resection at the proximal tibia and the distal femur was measured
radiographically. The relationship between the change of femorotibial
angle (δFTA) and the change of joint line height, was analysed.Objectives
Methods
A lack of connection between surgeons and patients in evaluating
the outcome of total knee arthroplasty (TKA) has led to the search
for the ideal patient-reported outcome measure (PROM) to evaluate
these procedures. We hypothesised that the desired psychometric properties
of the ideal outcome tool have not been uniformly addressed in studies describing
TKA PROMS. A systematic review was conducted investigating one or more facets
of patient-reported scores for measuring primary TKA outcome. Studies
were analysed by study design, subject demographics, surgical technique,
and follow-up adequacy, with the ‘gold standard’ of psychometric
properties being systematic development, validity, reliability,
and responsiveness.Objectives
Methods
Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis,
were used to determine if high frequency ultrasound can ensure intra-articular
injections are accurately positioned in the knee joint. A high-resolution small animal ultrasound system with a 40 MHz
transducer was used for image-guided injections. A total of 36 guinea
pigs were anaesthetised with isoflurane and placed on a heated stage.
Sterile needles were inserted directly into the knee joint medially,
while the transducer was placed on the lateral surface, allowing
the femur, tibia and fat pad to be visualised in the images. B-mode
cine loops were acquired during 100 µl. We assessed our ability
to visualise 1) important anatomical landmarks, 2) the needle and
3) anatomical changes due to the injection. Objective
Methods
This systematic review and meta-analysis was conducted to determine
the mid- to long-term clinical outcomes for a medial-pivot total
knee replacement (TKR) system. The objectives were to synthesise
available survivorship, Knee Society Scores (KSS), and reasons for
revision for this system. A systematic search was conducted of two online databases to
identify sources of survivorship, KSS, and reasons for revision.
Survivorship results were compared with values in the National Joint
Registry of England, Wales, and Northern Ireland (NJR).Objectives
Methods
We are entering a new era with governmental bodies
taking an increasingly guiding role, gaining control of registries,
demanding direct access with release of open public information
for quality comparisons between hospitals. This review is written
by physicians and scientists who have worked with the Swedish Knee
Arthroplasty Register (SKAR) periodically since it began. It reviews
the history of the register and describes the methods used and lessons
learned. Cite this article:
To assess the effectiveness of a modified tibial tubercle osteotomy
as a treatment for arthroscopically diagnosed chondromalacia patellae. A total of 47 consecutive patients (51 knees) with arthroscopically
proven chondromalacia, who had failed conservative management, underwent
a modified Fulkerson tibial tubercle osteotomy. The mean age was
34.4 years (19.6 to 52.2). Pre-operatively, none of the patients
exhibited signs of patellar maltracking or instability in association
with their anterior knee pain. The minimum follow-up for the study
was five years (mean 72.6 months (62 to 118)), with only one patient
lost to follow-up.Objectives
Methods
Numerous complications following total knee replacement (TKR)
relate to the patellofemoral (PF) joint, including pain and patellar
maltracking, yet the options for A total of three knees with end-stage osteoarthritis and three
knees that had undergone TKR at more than one year’s follow-up were
investigated. In each knee, sequential biplane radiological images
were acquired from the sagittal direction (i.e. horizontal X-ray
source and 10° below horizontal) for a sequence of eight flexion
angles. Three-dimensional implant or bone models were matched to
the biplane images to compute the six degrees of freedom of PF tracking
and TF kinematics, and other clinical measures.Objectives
Methods