In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.Aims
Methods
In In a hip fracture experiment, nine pairs of human cadaver femurs
were tested in a paired study design. The femurs were then re-matched
according to BMD, creating two new test groups. Intra-pair variance
and paired correlations in fixation stability were calculated. A
hypothetical power analysis was then performed to explore the required sample
size for the two types of group allocation. Objective
Methods