Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint Research
Vol. 2, Issue 10 | Pages 227 - 232
1 Oct 2013
Kearney RS Parsons N Costa ML

Objectives

To conduct a pilot randomised controlled trial to evaluate the feasibility of conducting a larger trial to evaluate the difference in Victorian Institute of Sports Assessment-Achilles (VISA-A) scores at six months between patients with Achilles tendinopathy treated with a platelet-rich plasma (PRP) injection compared with an eccentric loading programme.

Methods

Two groups of patients with mid-substance Achilles tendinopathy were randomised to receive a PRP injection or an eccentric loading programme. A total of 20 patients were randomised, with a mean age of 49 years (35 to 66). All outcome measures were recorded at baseline, six weeks, three months and six months.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 140 - 148
1 Aug 2013
Gauthier L Dinh L Beaulé PE

Objectives

To quantify and compare peri-acetabular bone mineral density (BMD) between a monoblock acetabular component using a metal-on-metal (MoM) bearing and a modular titanium shell with a polyethylene (PE) insert. The secondary outcome was to measure patient-reported clinical function.

Methods

A total of 50 patients (25 per group) were randomised to MoM or metal-on-polyethlene (MoP). There were 27 women (11 MoM) and 23 men (14 MoM) with a mean age of 61.6 years (47.7 to 73.2). Measurements of peri-prosthetic acetabular and contralateral hip (covariate) BMD were performed at baseline and at one and two years’ follow-up. The Western Ontario and McMaster Universities osteoarthritis index (WOMAC), University of California, Los Angeles (UCLA) activity score, Harris hip score, and RAND-36 were also completed at these intervals.


Bone & Joint Research
Vol. 2, Issue 7 | Pages 132 - 139
1 Jul 2013
Ketola S Lehtinen J Rousi T Nissinen M Huhtala H Konttinen YT Arnala I

Objectives. To report the five-year results of a randomised controlled trial examining the effectiveness of arthroscopic acromioplasty in the treatment of stage II shoulder impingement syndrome. Methods. A total of 140 patients were randomly divided into two groups: 1) supervised exercise programme (n = 70, exercise group); and 2) arthroscopic acromioplasty followed by a similar exercise programme (n = 70, combined treatment group). Results. The main outcome measure was self-reported pain as measured on a visual analogue scale. At the five-year assessment a total of 109 patients were examined (52 in the exercise group and 57 in the combined treatment group). There was a significant decrease in mean self-reported pain on the VAS between baseline and the five-year follow-up in both the exercise group (from 6.5 (1 to 10) to 2.2 (0 to 8); p < 0.001) and the combined treatment group (from 6.4 (2 to 10) to 1.9 (0 to 8); p < 0.001). The same trend was seen in the secondary outcome measures (disability, working ability, pain at night, Shoulder Disability Questionnaire and reported painful days). An intention-to-treat analysis showed statistically significant improvements in both groups at five years compared with baseline. Further, improvement continued between the two- and five-year timepoints. No statistically significant differences were found in the patient-centred primary and secondary parameters between the two treatment groups. Conclusions. Differences in the patient-centred primary and secondary parameters between the two treatment groups were not statistically significant, suggesting that acromioplasty is not cost-effective. Structured exercise treatment seems to be the treatment of choice for shoulder impingement syndrome