Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives

Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA.

Methods

The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 307 - 313
1 Jul 2016
Sandgren B Skorpil M Nowik P Olivecrona H Crafoord J Weidenhielm L Persson A

Objectives. Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV. Results. We could assess wear and PAO while substantially lowering the effective radiation dose to 0.7 mSv for a total pelvic view with an accuracy of around 0.5 mm for linear wear and 2 mm to 3 mm for PAO. Conclusion. CT for detection of prosthetic wear and PAO could be used with clinically acceptable accuracy at a radiation exposure level equal to plain radiographic exposures. Cite this article: B. Sandgren, M. Skorpil, P. Nowik, H. Olivecrona, J. Crafoord, L. Weidenhielm, A. Persson. Assessment of wear and periacetabular osteolysis using dual energy computed tomography on a pig cadaver to identify the lowest acceptable radiation dose. Bone Joint Res 2016;5:307–313. DOI: 10.1302/2046-3758.57.2000566


Bone & Joint Research
Vol. 4, Issue 3 | Pages 45 - 49
1 Mar 2015
Thompson MJ Ross J Domson G Foster W

Objectives

The clinical utility of routine cross sectional imaging of the abdomen and pelvis in the screening and surveillance of patients with primary soft-tissue sarcoma of the extremities for metastatic disease is controversial, based on its questionable yield paired with concerns regarding the risks of radiation exposure, cost, and morbidity resulting from false positive findings.

Methods

Through retrospective review of 140 patients of all ages (mean 53 years; 2 to 88) diagnosed with soft-tissue sarcoma of the extremity with a mean follow-up of 33 months (0 to 291), we sought to determine the overall incidence of isolated abdominopelvic metastases, their temporal relationship to chest involvement, the rate of false positives, and to identify disparate rates of metastases based on sarcoma subtype.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective

The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing.

Methods

CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint.


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.