Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims. Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes. Methods. A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications. Results. Over a mean follow-up period of 10.6 years, the mean stem subsidence was similar between groups, with a mean of -1.20 mm (95% confidence interval (CI) -2.28 to -0.12) in the broaching group and a mean of -0.73 mm (95% CI -1.65 to 0.20) in the compaction group (p = 0.07). The long-term migration patterns of all stems were similar. The clinical and radiological outcomes were similar between groups. There were two intraoperative fractures in the compaction group that were fixed with cable wire and healed without complications. No stems were revised. Conclusion. Similar stem subsidence and radiological and clinical outcomes were identified after the use of compaction and broaching techniques of the femur at long-term follow-up. Only the compaction group had intraoperative periprosthetic femur fractures, but there were no long-term consequences of these. Cite this article: Bone Jt Open 2021;2(12):1035–1042


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 512 - 519
1 Sep 2020
Monzem S Ballester RY Javaheri B Poulet B Sônego DA Pitsillides AA Souza RL

Aims

The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones.

Methods

Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.