Advertisement for orthosearch.org.uk
Results 1 - 20 of 85
Results per page:
Bone & Joint Open
Vol. 5, Issue 1 | Pages 46 - 52
19 Jan 2024
Assink N ten Duis K de Vries JPM Witjes MJH Kraeima J Doornberg JN IJpma FFA

Aims. Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. Methods. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group. Results. A total of 15 patients were treated with 3D surgical planning in which 83 screws were placed by using drilling guides. The median deviation of the achieved screw trajectory from the planned trajectory was 3.4° (interquartile range (IQR) 2.5 to 5.4) and the difference in entry points (i.e. plate position) was 3.0 mm (IQR 2.0 to 5.5) compared to the 3D preoperative planning. The length of 72 screws (86.7%) were according to the planning. Compared to the historical cohort, 3D-guided surgery showed an improved surgical reduction in terms of median gap (3.1 vs 4.7 mm; p = 0.126) and step-off (2.9 vs 4.0 mm; p = 0.026). Conclusion. The use of 3D surgical planning including drilling guides was feasible, and facilitated accurate screw directions, screw lengths, and plate positioning. Moreover, the personalized approach improved fracture reduction as compared to a historical cohort. Cite this article: Bone Jt Open 2024;5(1):46–52


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims. This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. Methods. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included. Results. Torsion index (TI) and apical vertebral rotation (AVR) were identified as accurate predictors of curve progression in early visits. Initial TI > 3.7° and AVR > 5.8° were predictive of curve progression. Thoracic hypokyphosis was inconsistently observed in progressive curves with weak evidence. While sagittal wedging was observed in mild curves, there is insufficient evidence for its correlation with curve progression. In curves with initial Cobb angle < 25°, Cobb angle was a poor predictor for future curve progression. Prediction accuracy was improved by incorporating serial reconstructions in stepwise layers. However, a lack of post-hoc analysis was identified in studies involving geometrical models. Conclusion. For patients with mild curves, TI and AVR were identified as predictors of curve progression, with TI > 3.7° and AVR > 5.8° found to be important thresholds. Cobb angle acts as a poor predictor in mild curves, and more investigations are required to assess thoracic kyphosis and wedging as predictors. Cumulative reconstruction of radiographs improves prediction accuracy. Comprehensive analysis between progressive and non-progressive curves is recommended to extract meaningful thresholds for clinical prognostication. Cite this article: Bone Jt Open 2024;5(3):243–251


Bone & Joint Open
Vol. 1, Issue 7 | Pages 359 - 363
9 Jul 2020
Teo THL Tan BJ Loo WL Yeo AKS Dinesh SK

The COVID-19 pandemic creates unique challenges in the practice of spinal surgery. We aim to show how the use of a high-definition 3D digital exoscope can help streamline workflows, and protect both patients and healthcare staff


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims. This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). Methods. This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA. Results. The value of GTVA was 20.9° (SD 4.7°) (95% CI 20.47° to 21.3°). Results of analysis of variance revealed that females had a statistically significant larger angle of 21.95° (SD 4.49°) compared to males, which were found to be 20.49° (SD 4.8°) (p = 0.001). Conclusion. This study identified a consistent relationship between palpable anatomical landmarks, enhancing IMN accuracy by utilizing 3D CT scans and replicating a 20.9° angle from the greater tuberosity to the transepicondylar axis. Using this angle as a secondary reference may help mitigate the complications associated with malrotation of the humerus following IMN. However, future trials are needed for clinical validation. Cite this article: Bone Jt Open 2024;5(10):929–936


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 923
28 Nov 2022
Hareendranathan AR Wichuk S Punithakumar K Dulai S Jaremko J

Aims. Studies of infant hip development to date have been limited by considering only the changes in appearance of a single ultrasound slice (Graf’s standard plane). We used 3D ultrasound (3DUS) to establish maturation curves of normal infant hip development, quantifying variation by age, sex, side, and anteroposterior location in the hip. Methods. We analyzed 3DUS scans of 519 infants (mean age 64 days (6 to 111 days)) presenting at a tertiary children’s hospital for suspicion of developmental dysplasia of the hip (DDH). Hips that did not require ultrasound follow-up or treatment were classified as ‘typically developing’. We calculated traditional DDH indices like α angle (α. SP. ), femoral head coverage (FHC. SP. ), and several novel indices from 3DUS like the acetabular contact angle (ACA) and osculating circle radius (OCR) using custom software. Results. α angle, FHC, and ACA indices increased and OCR decreased significantly by age in the first four months, mean α. SP. rose from 62.2° (SD 5.7°) to 67.3° (SD 5.2°) (p < 0.001) in one- to eight- and nine- to 16-week-old infants, respectively. Mean α. SP. and mean FHC. SP. were significantly, but only slightly, lower in females than in males. There was no statistically significant difference in DDH indices observed between left and right hip. All 3DUS indices varied significantly between anterior and posterior section of the hip. Mean 3D indices of α angle and FHC were significantly lower anteriorly than posteriorly: α. Ant. = 58.2° (SD 6.1°), α. Post. = 63.8° (SD 6.3°) (p < 0.001), FHC. Ant. = 43.0 (SD 7.4), and FHC. Post. = 55.4° (SD 11.2°) (p < 0.001). Acetabular rounding measured byOCR indices was significantly greater in the anterior section of the hip (p < 0.001). Conclusion. We used 3DUS to show that hip shape and normal growth pattern vary significantly between anterior and posterior regions, by magnitudes similar to age-related changes. This highlights the need for careful selection of the Graf plane during 2D ultrasound examination. Whole-joint evaluation by obtaining either 3DUS or manual ‘sweep’ video images provides more comprehensive DDH assessment. Cite this article: Bone Jt Open 2022;3(11):913–923


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Open
Vol. 5, Issue 10 | Pages 818 - 824
2 Oct 2024
Moroder P Herbst E Pawelke J Lappen S Schulz E

Aims. The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems. Methods. An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements. Results. There were variations in jump height between rTSA systems at a given size, resulting in large differences in stability ratio between systems. Standard liners exhibited a stability ratio range from 126% to 214% (mean 158% (SD 23%)) and constrained liners a range from 151% to 479% (mean 245% (SD 76%)). The angle of coverage showed a range from 103° to 130° (mean 115° (SD 7°)) for standard and a range from 113° to 156° (mean 133° (SD 11°)) for constrained liners. Four arthroplasty systems kept the stability ratio of standard liners constant (within 5%) across different sizes, while one system showed slight inconsistencies (within 10%), and ten arthroplasty systems showed large inconsistencies (range 11% to 28%). The stability ratio of constrained liners was consistent across different sizes in two arthroplasty systems and inconsistent in seven systems (range 18% to 106%). Conclusion. Large differences in jump height and resulting degree of constraint of rTSA liners were observed between different implant systems, and in many cases even within the same implant systems. While the immediate clinical effect remains unclear, in theory the degree of constraint of the liner plays an important role for the dislocation and notching risk of a rTSA system. Cite this article: Bone Jt Open 2024;5(10):818–824


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time predictions models, which may lead to improved operating room planning and efficiency. Cite this article: Bone Jt Open 2022;3(5):383–389


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


Bone & Joint Open
Vol. 3, Issue 9 | Pages 666 - 673
1 Sep 2022
Blümel S Leunig M Manner H Tannast M Stetzelberger VM Ganz R

Aims. Avascular femoral head necrosis in the context of gymnastics is a rare but serious complication, appearing similar to Perthes’ disease but occurring later during adolescence. Based on 3D CT animations, we propose repetitive impact between the main supplying vessels on the posterolateral femoral neck and the posterior acetabular wall in hyperextension and external rotation as a possible cause of direct vascular damage, and subsequent femoral head necrosis in three adolescent female gymnasts we are reporting on. Methods. Outcome of hip-preserving head reduction osteotomy combined with periacetabular osteotomy was good in one and moderate in the other up to three years after surgery; based on the pronounced hip destruction, the third received initially a total hip arthroplasty. Results. The described pathology is quite devastating, and extensive joint preserving surgery (which has been shown successful in Perthes’ cases) was less successful in this patient cohort. Conclusion. Supraselective angiography may be helpful to improve pathomechanical understanding and surgical decision making. Cite this article: Bone Jt Open 2022;3(9):666–673


Bone & Joint Open
Vol. 4, Issue 8 | Pages 612 - 620
21 Aug 2023
Martin J Johnson NA Shepherd J Dias J

Aims. There is ambiguity surrounding the degree of scaphoid union required to safely allow mobilization following scaphoid waist fracture. Premature mobilization could lead to refracture, but late mobilization may cause stiffness and delay return to normal function. This study aims to explore the risk of refracture at different stages of scaphoid waist fracture union in three common fracture patterns, using a novel finite element method. Methods. The most common anatomical variant of the scaphoid was modelled from a CT scan of a healthy hand and wrist using 3D Slicer freeware. This model was uploaded into COMSOL Multiphysics software to enable the application of physiological enhancements. Three common waist fracture patterns were produced following the Russe classification. Each fracture had differing stages of healing, ranging from 10% to 90% partial union, with increments of 10% union assessed. A physiological force of 100 N acting on the distal pole was applied, with the risk of refracture assessed using the Von Mises stress. Results. Overall, 90% to 30% fracture unions demonstrated a small, gradual increase in the Von Mises stress of all fracture patterns (16.0 MPa to 240.5 MPa). All fracture patterns showed a greater increase in Von Mises stress from 30% to 10% partial union (680.8 MPa to 6,288.6 MPa). Conclusion. Previous studies have suggested 25%, 50%, and 75% partial union as sufficient for resuming hand and wrist mobilization. This study shows that 30% union is sufficient to return to normal hand and wrist function in all three fracture patterns. Both 50% and 75% union are unnecessary and increase the risk of post-fracture stiffness. This study has also demonstrated the feasibility of finite element analysis (FEA) in scaphoid waist fracture research. FEA is a sustainable method which does not require the use of finite scaphoid cadavers, hence increasing accessibility into future scaphoid waist fracture-related research. Cite this article: Bone Jt Open 2023;4(8):612–620


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension, adduction, and external rotation (p ≤ 0.001). Only internal rotation was not significantly different between groups (p = 0.388). The configuration where correction of the inclination was done by medialization (C+M+) led to the worst ROM in adduction, extension, abduction, flexion, and external rotation of the shoulder. Conclusion. Our software study shows that, when using a 135° inlay reversed humeral implant, correcting glenoid inclination (RSA angle 0°) and lateralizing the glenoid component by using an angled bony or metallic augment of 8 to 10 mm provides optimal impingement-free ROM. Cite this article: Bone Jt Open 2024;5(10):851–857


Bone & Joint Open
Vol. 1, Issue 10 | Pages 653 - 662
20 Oct 2020
Rahman L Ibrahim MS Somerville L Teeter MG Naudie DD McCalden RW

Aims. To compare the in vivo long-term fixation achieved by two acetabular components with different porous ingrowth surfaces using radiostereometric analysis (RSA). Methods. This was a minimum ten-year follow-up of a prospective randomized trial of 62 hips with two different porous ingrowth acetabular components. RSA exams had previously been acquired through two years of follow-up. Patients returned for RSA examination at a minimum of ten years. In addition, radiological appearance of these acetabular components was analyzed, and patient-reported outcome measures (PROMs) obtained. Results. In all, 15 hips were available at ten years. There was no statistically significant difference in PROMS between the two groups; PROMs were improved at ten years compared to preoperative scores. Conventional radiological assessment revealed well-fixed components. There was minimal movement for both porous surfaces in translation (X, Y, Z, 3D translation in mm (median and interquartile range (IQR)), StikTite (Smith and Nephew, Memphis, Tennessee, USA): 0.03 (1.08), 0.12 (0.7), 0.003 (2.3), 0.37 (0.30), and Roughcoat (Smith and Nephew): -0.6 (0.59),–0.1 (0.49), 0.1 (1.12), 0.48 (0.38)), and rotation (X, Y, Z rotation in degrees (median and IQR), (Stiktite: -0.4 (3), 0.28 (2), -0.2 (1), and Roughcoat: - 0.4 (1),–0.1 (1), 0.2 (2)). There was no statistically significant difference between the two cohorts (p-value for X, Y, Z, 3D translation - 0.54, 0.46, 0.87, 0.55 and for X, Y, Z rotation - 0.41, 0.23, 0.23 respectively) at ten years. There was significant correlation between two years and ten years 3D translation for all components (r = 0.81(p =< 0.001)). Conclusion. Both porous ingrowth surfaces demonstrated excellent fixation on plain radiographs and with RSA at ten years. Short-term RSA data are good predictors for long-term migration data


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. Methods. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (. Δ. sacral slope(SS). stand-sit. > 30°), or stiff (. ∆. SS. stand-sit. < 10°) spinopelvic mobility contributed to increased error rates. Results. The paired absolute difference between CAS and postoperative imaging measurements was 2.3° (standard deviation (SD) 2.6°) for inclination and 3.1° (SD 4.2°) for anteversion. Using a target zone of 40° (± 10°) (inclination) and 20° (± 10°) (anteversion), postoperative standing radiographs measured 96% of acetabular components within the target zone for both inclination and anteversion. Multiple logistic regression analysis controlling for BMI and sex revealed that hypermobile spinopelvic mobility significantly increased error rates for anteversion (odds ratio (OR) 2.48, p = 0.009) and inclination (OR 2.44, p = 0.016), whereas stiff spinopelvic mobility increased error rates for anteversion (OR 1.97, p = 0.028). There were no dislocations at a minimum three-year follow-up. Conclusion. Despite high reliability in acetabular positioning for inclination in a large patient cohort using an optical CAS system, hypermobile and stiff spinopelvic mobility significantly increased the risk of clinically relevant errors. In patients with abnormal spinopelvic mobility, CAS systems should be adjusted for use to avoid acetabular component misalignment and subsequent risk for long-term dislocation. Cite this article: Bone Jt Open 2022;3(6):475–484


Bone & Joint Open
Vol. 3, Issue 2 | Pages 114 - 122
1 Feb 2022
Green GL Arnander M Pearse E Tennent D

Aims. Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility. Methods. A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed. Results. A total of 25 studies were initially eligible. Following screening, nine papers were included for review. Main themes identified compared 2D and 3D imaging, as well as linear- compared with area-based techniques. Heterogenous data were acquired, and therefore no meta-analysis was performed. Conclusion. No ideal CT-based method is demonstrated in the current literature, however evidence suggests that surface area methods are more reproducible and lead to fewer over-estimations of bone loss, provided the views used are standardized. A prospective imaging trial is required to provide a more definitive answer to this research question. Cite this article: Bone Jt Open 2022;3(2):114–122


Bone & Joint Open
Vol. 2, Issue 7 | Pages 552 - 561
28 Jul 2021
Werthel J Boux de Casson F Burdin V Athwal GS Favard L Chaoui J Walch G

Aims. The aim of this study was to describe a quantitative 3D CT method to measure rotator cuff muscle volume, atrophy, and balance in healthy controls and in three pathological shoulder cohorts. Methods. In all, 102 CT scans were included in the analysis: 46 healthy, 21 cuff tear arthropathy (CTA), 18 irreparable rotator cuff tear (IRCT), and 17 primary osteoarthritis (OA). The four rotator cuff muscles were manually segmented and their volume, including intramuscular fat, was calculated. The normalized volume (NV) of each muscle was calculated by dividing muscle volume to the patient’s scapular bone volume. Muscle volume and percentage of muscle atrophy were compared between muscles and between cohorts. Results. Rotator cuff muscle volume was significantly decreased in patients with OA, CTA, and IRCT compared to healthy patients (p < 0.0001). Atrophy was comparable for all muscles between CTA, IRCT, and OA patients, except for the supraspinatus, which was significantly more atrophied in CTA and IRCT (p = 0.002). In healthy shoulders, the anterior cuff represented 45% of the entire cuff, while the posterior cuff represented 40%. A similar partition between anterior and posterior cuff was also found in both CTA and IRCT patients. However, in OA patients, the relative volume of the anterior (42%) and posterior cuff (45%) were similar. Conclusion. This study shows that rotator cuff muscle volume is significantly decreased in patients with OA, CTA, or IRCT compared to healthy patients, but that only minimal differences can be observed between the different pathological groups. This suggests that the influence of rotator cuff muscle volume and atrophy (including intramuscular fat) as an independent factor of outcome may be overestimated. Cite this article: Bone Jt Open 2021;2(7):552–561