Advertisement for orthosearch.org.uk
Results 1 - 20 of 36
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1157 - 1163
1 Aug 2005
Peter B Zambelli P Guicheux J Pioletti DP

In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which osteoblasts could be safely exposed. Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μ. m. Murine cells can be exposed to concentrations as high as 10 μ. m. . A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 888 - 893
1 Sep 1998
Overgaard L Danielsen N Bjursten LM

Little is known about the tissue reactions to various implant materials which coincide with an inflammatory reaction. We used the avridine arthritis rat model to evaluate the tissue response in the synovial, interstitial and subcutaneous tissues after implant insertion. Quantitative immunohistochemistry showed that normal joint synovial tissue is dominated by ED2-positive resident macrophages. Polyethylene implants induced a much stronger foreign-body reaction than titanium implants, as measured by the number of interfacial ED1-positive macrophages. The tissue response to titanium and polyethylene was also vastly different in arthritic synovial tissue compared with control tissue. It is likely that these biomaterials interact differently with inflammatory cells or intermediary compounds. It may be that arthritic synovial tissue produces reactive oxygen intermediates (free radicals) with which titanium has a unique anti-inflammatory interaction in vitro


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1176 - 1181
1 Aug 2010
Tayton E Evans S O’Doherty D

We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 159 - 163
1 Jan 2010
Aykut S Öztürk A Özkan Y Yanik K İlman AA Özdemir RM

We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p < 0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 290 - 296
1 Mar 2000
Sovak G Weiss A Gotman I

Coating titanium alloy implants with titanium nitride (TiN) by the method of Powder Immersion Reaction Assisted Coating (PIRAC) produces a stable layer on their surface. We have examined the ability of the new TiN coating to undergo osseointegration. We implanted TiN-coated and uncoated Ti6Al4V alloy pins into the femora of six-month-old female Wistar rats. SEM after two months showed a bone collar around both TiN-coated and uncoated implants. Morphometrical analysis revealed no significant differences between the percentage of the implant-bone contact and the area and volume of the bone around TiN-coated compared with uncoated implants. Electron-probe microanalysis indicated the presence of calcium and phosphorus at the implant-bone interface. Mineralisation around the implants was also confirmed by labelling with oxytetracycline. Strong activity of alkaline phosphatase and weak activity of tartrate-resistant acid phosphatase were shown histochemically. Very few macrophages were detected by the non-specific esterase reaction at the site of implantation. Our findings indicate good biocompatibility and bone-bonding properties of the new PIRAC TiN coatings which are comparable to those of uncoated Ti6Al4V alloy implants


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 705 - 709
1 Jul 1999
Hara T Hayashi K Nakashima Y Kanemaru T Iwamoto Y

We have studied the effect of hydroxyapatite (HA) coating in 15 ovariectomised and 15 normal rats which had had a sham procedure. Twenty-four weeks after operation, HA-coated implants were inserted into the intramedullary canal of the right femur and uncoated implants into the left femur. The prostheses were removed four weeks after implantation. Twelve specimens in each group had mechanical push-out tests. Sagittal sections of the other three were evaluated by SEM.

The bone mineral density (BMD) of the dissected left tibia was measured by dual-energy x-ray absorptiometry. The difference in BMD between the control and ovariectomised tibiae was 35.01 mg/cm2 (95% CI, 26.60 to 43.42). The push-out strength of the HA-coated implants was higher than that of the uncoated implants in both groups (p < 0.0001), but the HA-coated implants of the ovariectomised group had a reduction in push-out strength of 40.3% compared with the control group (p < 0.0001).

Our findings suggest that HA-coated implants may improve the fixation of a cementless total hip prosthesis but that the presence of osteoporosis may limit the magnitude of this benefit.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 647 - 651
1 Jul 1996
Arens S Schlegel U Printzen G Ziegler WJ Perren SM Hansis M

Resistance to infection may be influenced by foreign bodies such as devices for fracture fixation. It is known that stainless steel and commercially-pure titanium have different biocompatibilities. We have investigated susceptibility to infection after a local bacterial challenge using standard 2.0 dynamic compression plates of either stainless steel or titanium in rabbit tibiae. After the wounds had been closed, various concentrations of a strain of Staphylococcus aureus were inoculated percutaneously. Under otherwise identical experimental conditions the rate of infection for steel plates (75%) was significantly higher than that for titanium plates (35%) (p < 0.05)


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1182 - 1189
1 Nov 2003
Hacking SA Harvey EJ Tanzer M Krygier JJ Bobyn JD

We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1003 - 1007
1 Nov 1997
Oka M Chang Y Nakamura T Ushio K Toguchida J Gu H

We have studied damage to the tibial articular surface after replacement of the femoral surface in dogs. We inserted pairs of implants made of alumina, titanium and polyvinyl alcohol (PVA) hydrogel on titanium fibre mesh into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. We discuss the clinical implications of the possible use of this material in articular resurfacing and joint replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 922 - 930
1 Aug 2003
Ushio K Oka† M Hyon S Yura S Toguchida J Nakamura T

The use of a composite osteochondral device for simulating partial hemiarthroplasty was examined. The device was composed of a polyvinyl alcohol hydrogel and a titanium fibre mesh, acting as artificial cartilage and as porous artificial bone, respectively. The titanium fibre mesh was designed to act as an interface material, allowing firm attachment to both the polyvinyl alcohol gel (through injection moulding) and the femoral joint surface (through bony ingrowth). We implanted 22 of these devices into canine femoral heads. Histological findings from the acetabular cartilage and synovial membrane, as well as the attachment of the prosthesis to bone, were examined up until one year after operation. No marked pathological changes were found and firm attachment of the device to the underlying bone was confirmed. The main potential application for this device is for partial surface replacement of the femoral head after osteonecrosis. Other applications could include articular resurfacing and the replacement of intervertebral discs


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 297 - 303
1 Mar 2000
Ramaniraka NA Rakotomanana LR Leyvraz P

After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 767 - 773
1 Jul 2002
Skoglund B Larsson L Aspenberg PA

Wear particles commonly used for experiments may carry adherent endotoxin on their surfaces, which may be responsible for the observed effects. In this study, we attached titanium plates to the tibiae of 20 rats. After osseointegration, endotoxin-contaminated or uncontaminated high-density-polyethylene (HDPE) particles were applied. Contaminated specimens showed a dramatic resorption of bone after seven days but new bone filled the site again at 21 days. Uncontaminated specimens showed no resorption. In 18 rats we implanted intramuscularly discs of ultra-high-molecular-weight polyethylene (UHMWPE) with baseline or excess contamination of endotoxin. Excess endotoxin disappeared within 24 hours and the amount of endotoxin remained at baseline level (contamination from production). Uncontaminated titanium discs did not adsorb endotoxin in vivo. The endotoxin was measured by analytical chemistry. Locally-applied endotoxin stimulated bone resorption similarly to that in experiments with wear particles. Endotoxin on the surface of implants and particles appeared to be inactivated in situ. A clean implant surface did not adsorb endotoxin. Our results suggest that endotoxin adhering to orthopaedic implants is not a major cause for concern


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 701 - 705
1 May 2007
Thiele OC Eckhardt C Linke B Schneider E Lill CA

We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft. A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r. 2. = 0.867, p < 0.01) and also between its thickness (r. 2. = 0.826, p < 0.01) and bone mineral density (r. 2. = 0.861, p < 0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378). We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 816 - 819
1 Sep 1997
An YH Bradley J Powers DL Friedman RJ

We evaluated the effects of a serum protein coating on prosthetic infection in 29 adult male rabbits divided into three groups: control, albumin-coated and uncoated. We used 34 grit-blasted, commercially pure titanium implants. Eleven were coated with cross-linked albumin. All the implants were exposed to a suspension of Staphylococcus epidermidis before implantation. Our findings showed that albumin-coated implants had a much lower infection rate (27%) than the uncoated implants (62%). This may be a useful method of reducing the infection of prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 873 - 878
1 Jun 2005
Oddy MJ Pendegrass CJ Goodship AE Cannon SR Briggs TWR Blunn GW

We developed an in vivo model of the attachment of a patellar tendon to a metal implant to simulate the reconstruction of an extensor mechanism after replacement of the proximal tibia. In 24 ewes, the patellar tendon was attached to a hydroxyapatite (HA)-coated titanium prosthesis. In 12, the interface was augmented with autograft containing cancellous bone and marrow. In the remaining ewes, the interface was not grafted. Kinematic gait analysis showed nearly normal function of the joint by 12 weeks. Force-plate assessment showed a significant increase in functional weight-bearing in the grafted animals (p = 0.043). The tendon-implant interface showed that without graft, encapsulation of fibrous tissue occurred. With autograft, a developing tendon-bone-HA-implant interface was observed at six weeks and by 12 weeks a layered tendon-fibrocartilage-bone interface was seen which was similar to a direct-type enthesis. With stable mechanical fixation, an appropriate bioactive surface and biological augmentation the development of a functional tendon-implant interface can be achieved


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 139 - 143
1 Jan 2001
Fini M Giavaresi G Torricelli P Krajewski A Ravaglioli A Belmonte MM Biagini G Giardino R

We implanted nails made of titanium (Ti6Al4V) and of two types of glass ceramic material (RKKP and AP40) into healthy and osteopenic rats. After two months, a histomorphometric analysis was performed and the affinity index calculated. In addition, osteoblasts from normal and osteopenic bone were cultured and the biomaterials were evaluated in vitro. In normal bone the rate of osseointegration was similar for all materials tested (p > 0.5) while in osteopenic bone AP40 did not osseointegrate (p > 0.0005). In vitro, no differences were observed for all biomaterials when cultured in normal bone-derived cells whereas in osteopenic-bone-derived cells there was a significant difference in some of the tested parameters when using AP40. Our findings suggest that osteopenic models may be used in vivo in the preclinical evaluation of orthopaedic biomaterials. We suggest that primary cell cultures from pathological models could be used as an experimental model in vitro


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 598 - 606
1 May 2004
Daley B Doherty AT Fairman B Case CP

Wear debris was extracted from 21 worn hip and knee replacements. Its mutagenic effects were tested on human cells in tissue culture using the micronucleus assay and fluorescent in situ hybridisation. The extracted wear debris increased the level of micronuclei in a linear dose-dependent manner but with a tenfold difference between samples. The concentration of titanium +/− vanadium and aluminium within the wear debris was linearly related both to the level of centromere-positive micronuclei in tissue culture, indicating an aneuploid event, and to the level of aneuploidy in vivo in peripheral blood lymphocytes. The concentration of cobalt and chromium +/− nickel and molybdenum in the wear debris correlated with the total index of micronuclei in tissue culture, both centromere-positive and centromere-negative i.e. both chromosomal breakage and aneuploidy events. The results show that wear debris can damage chromosomes in a dose-dependent manner which is specific to the type of metal. The results from studies in vitro correlate with those in vivo and suggest that the wear debris from a worn implant is at least partly responsible for the chromosomal damage which is seen in vivo