Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by
The role of bone-graft extenders in impaction revision surgery is becoming increasingly important. Tricalcium phosphate and hydroxyapatite have been shown to be both biocompatible and osteoconductive, yet many surgeons remain reluctant to use them. The difficulty in handling bone-graft extenders can be partly alleviated by using porous particles and adding clotted blood. In an in vitro model we measured the cohesive properties of various impaction graft mixes. Several factors were evaluated including the use of pure
The complications of impaction
The use of impacted, morsellised
The properties of impacted morsellised
We investigated the antibiotic concentration in fresh-frozen femoral head allografts harvested from two groups of living donors. Ten samples were collected from patients with osteoarthritis of the hip and ten from those with a fracture of the neck of the femur scheduled for primary arthroplasty. Cefazolin (1 g) was administered as a pre-operative prophylactic antibiotic. After storage at −80°C for two weeks the pattern of release of cefazolin from morsellised femoral heads was evaluated by an We concluded that allografts of morsellised bone from the femoral head harvested from patients undergoing arthroplasty of the hip contained cefazolin, which had been administered pre-operatively and they exhibited inhibitory effects against bacteria
In impaction grafting of contained bone defects after revision joint arthroplasty the graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. Bone mills in current use produce a distribution of particle sizes more uniform than is desirable for maximising resistance to shear stresses. We have performed experiments in vitro using morsellised allograft bone from the femoral head which have shown that its mechanical properties improve with increasing normal load and with increasing shear strains (strain hardening). The mechanical strength also increases with increasing compaction energy, and with the addition of bioglass particles to make good the deficiency in small and very small fragments. Donor femoral heads may be milled while frozen without affecting the profile of the particle size. Osteoporotic femoral heads provide a similar grading of sizes, although fewer particles are obtained from each specimen. Our findings have implications for current practice and for the future development of materials and techniques.
This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.
Soaking
The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised
The use of impaction
We have examined the process of fusion of the intertransverse processes and
Spines are often stabilised posteriorly by internal fixation and anteriorly by a
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement,
Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with
Fusion is the main goal in the surgical management of the injured and unstable spine. A wide variety of implants is available to enhance this. Our study was performed to evaluate the stabilising characteristics of several anterior, posterior and combined systems of fixation. Six thoracolumbar (T11 to L2) spines from 13-week-old calves were first tested intact. Then the vertebral body of T13 was removed and the defect replaced and supported by a wooden block to simulate
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
We used an A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.
We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.
External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7). Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used. Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the BMP group compared with the matched group. The mean time to union (p = 0.002), the duration of absence from work (p = 0.018) and the time for which external fixation was required (p = 0.037) were significantly shorter in the BMP group than in the matched group. Secondary intervention due to delayed healing was required in two patients in the BMP group and seven in the matched group. RhBMP-7 can enhance the union of distal tibial fractures treated by external fixation.