The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement
We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based
It has recently been reported that the transverse
acetabular ligament (TAL) is helpful in determining the position
of the acetabular component in total hip replacement (THR). In this
study we used a computer-assisted
The biomechanical function of the anteromedial
(AM) and posterolateral (PL) bundles of the anterior cruciate ligament
(ACL) remains controversial. Some studies report that the AM bundle
stabilises the knee joint in anteroposterior (AP) translation and
rotational movement (both internal and external) to the same extent
as the PL bundle. Others conclude that the PL bundle is more important
than the AM in controlling rotational movement. The objective of this randomised cohort study involving 60 patients
(39 men and 21 women) with a mean age of 32.9 years (18 to 53) was
to evaluate the function of the AM and the PL bundles of the ACL
in both AP and rotational movements of the knee joint after single-bundle
and double-bundle ACL reconstruction using a computer navigation
system. In the double-bundle group the patients were also randomised
to have the AM or the PL bundle tensioned first, with knee laxity
measured after each stage of reconstruction. All patients had isolated
complete ACL tears, and the presence of a meniscal injury was the
only supplementary pathology permitted for inclusion in the trial.
The KT-1000 arthrometer was used to apply a constant load to evaluate
the AP translation and the rolimeter was used to apply a constant
rotational force. For the single-bundle group deviation was measured
before and after ACL reconstruction. In the double-bundle group
deviation was measured for the ACL-deficient, AM- or PL-reconstructed
first conditions and for the total reconstruction. We found that the AM bundle in the double-bundle group controlled
rotation as much as the single-bundle technique, and to a greater
extent than the PL bundle in the double-bundle technique. The double-bundle
technique increases AP translation and rotational stability in internal
rotation more than the single-bundle technique.
Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and
The use of a
We compared the orientation of the acetabular component obtained by a conventional manual technique with that using five different
Aims. The aim of this study was to compare the post-operative radiographic
and clinical outcomes between kinematically and mechanically aligned
total knee arthroplasties (TKAs). . Patients and Methods. A total of 60 TKAs (30 kinematically and 30 mechanically aligned)
were performed in 60 patients with varus osteoarthritis of the knee
using a
We conducted this prospective randomised and externally evaluated study to investigate whether the use of a
Aims. The aim of this study was to evaluate the effects of using a
portable, accelerometer-based surgical
We assessed the reliability, accuracy and variability of closed-wedge high tibial osteotomy (HTO) using computer-assisted surgery compared to the conventional technique. A total of 50 closed-wedge HTO procedures were performed using the
There are several methods for evaluating stability
of the joint during total knee replacement (TKR). Activities of daily
living demand mechanical loading to the knee joint, not only in
full extension, but also in mid-flexion. The purpose of this study
was to compare the varus-valgus stability throughout flexion in
knees treated with either cruciate-retaining or posterior-stabilised
TKR, using an intra-operative navigation technique. A total of 34
knees underwent TKR with computer navigation, during which the investigator
applied a maximum varus-valgus stress to the knee while steadily
moving the leg from full extension to flexion both before and after
prosthetic implantation. The femorotibial angle was measured simultaneously
by the
Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted
Between April 2004 and July 2007, we performed 241 primary total knee replacements in 204 patients using the e.motion posterior cruciate-retaining, multidirectional mobile-bearing prosthesis. Of these, 100 were carried out using an image-free
The aim of this prospective single-centre study
was to assess the difference in clinical outcome between total knee replacement
(TKR) using computerised navigation and that of conventional TKR.
We hypothesised that navigation would give a better result at every
stage within the first five years. A total of 195 patients (195
knees) with a mean age of 70.0 years (39 to 89) were allocated alternately
into two treatment groups, which used either conventional instrumentation
(group A, 97 knees) or a
We have developed a CT-based
In navigated total hip arthroplasty, the pelvis and the femur are tracked by means of rigid bodies fixed directly to the bones. Exact tracking throughout the procedure requires that the connection between the marker and bone remains stable in terms of translation and rotation. We carried out a cadaver study to compare the intra-operative stability of markers consisting of an anchoring screw with a rotational stabiliser and of pairs of pins and wires of different diameters connected with clamps. These devices were tested at different locations in the femur. Three human cadavers were placed supine on an operating table, with a reference marker positioned in the area of the greater trochanter. K-wires (3.2 mm), Steinman pins (3 and 4 mm), Apex pins (3 and 4 mm), and a standard screw were used as fixation devices. They were positioned medially in the proximal third of the femur, ventrally in the middle third and laterally in the distal portion. In six different positions of the leg, the spatial positions were recorded with a
This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy.Aims
Methods
The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise. Cite this article:
Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component. We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.Aims
Methods