We investigated the characteristics of patients
who achieved Japanese-style deep flexion (seiza-sitting) after total knee
replacement (TKR) and measured three-dimensional positioning and
the contact positions of the femoral and tibial components. Seiza-sitting
was achieved after surgery by 23 patients (29 knees) of a series
of 463 TKRs in 341 patients. Pre-operatively most of these patients
were capable of seiza-sitting, had a lower body mass index and a favourable
attitude towards the Japanese lifestyle (27 of 29 knees). According
to two-/three-dimensional image registration analysis in the seiza-sitting
position, flexion, varus and internal rotation angles of the tibial
component relative to the femoral component had means of 148° (. sd. 8.0),
1.9° (. sd. 3.2) and 13.4° (. sd. 5.9), respectively.
Femoral surface contact positions tended to be close to the posterior
edge of the tibial polyethylene insert, particularly in the lateral
compartment, but only 8.3% (two of 24) of knees showed femoral subluxation
over the posterior edge. The mean contact positions of the femoral
cam on the tibial post were located 7.8 mm (. sd. 1.5) proximal
to the lowest point of the polyethylene surface and 5.5 mm (. sd. 0.9)
medial to the centre of the post, indicating that the post-cam contact
position translated medially during seiza-sitting, but not proximally.
Collectively, the seiza-sitting position seems safe against component
dislocation, but the risks of posterior
We measured the contact areas and contact stresses at the post-cam mechanism of a posterior-stabilised total knee arthroplasty when a posterior force of 500 N was applied to the Kirschner Performance, Scorpio Superflex, NexGen LPS Flex Fixed, and NexGen LPS Flex Mobile knee systems. Measurements were made at 90°, 120°, and 150° of flexion both in neutral rotation and 10° of internal rotation of the tibial component. Peak contact stresses at 90°, 120°, and 150° were 24.0, 33.9, and 28.8 MPa, respectively, for the Kirschner; 26.0, 32.4, and 22.1 MPa, respectively, for the Scorpio; and 34.1, 31.5, and 32.5 MPa, respectively, for the NexGen LPS Flex Fixed. With an internally rotated tibia, the contact stress increased significantly with all the fixed-bearing arthroplasties but not with the NexGen LPS Flex Mobile arthroplasty. The post-cam design should be modified in order to provide a larger contact area whilst avoiding any impingement and
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.
Focal femoral inlay resurfacing has been developed
for the treatment of full-thickness chondral defects of the knee. This
technique involves implanting a defect-sized metallic or ceramic
cap that is anchored to the subchondral bone through a screw or
pin. The use of these experimental caps has been advocated in middle-aged
patients who have failed non-operative methods or biological repair
techniques and are deemed unsuitable for conventional arthroplasty
because of their age. This paper outlines the implant design, surgical
technique and biomechanical principles underlying their use. Outcomes
following implantation in both animal and human studies are also reviewed. Cite this article:
We report ten-year clinical and radiological
follow-up data for the Sigma Press Fit Condylar total knee replacement system
(Sigma PFC TKR). Between October 1998 and October 1999 a total of
235 consecutive PFC Sigma TKRs were carried out in 203 patients.
Patients were seen at a specialist nurse-led clinic seven to ten
days before admission and at six and 18 months, three, five and
eight to ten years after surgery. Data were recorded prospectively
at each clinic visit. Radiographs were obtained at the five- and
eight- to ten-year follow-up appointments. Of the 203 patients,
147 (171 knees) were alive at ten years and 12 were lost to follow-up.
A total of eight knees (3.4%) were revised, five for infection and
three to change the polyethylene insert. The survival at ten years
with an endpoint of revision for any reason was 95.9%, and with
an endpoint of revision for aseptic failure was 98.7%. The mean
American Knee Society Score (AKSS) was 79 (10 to 99) at eight to
ten years, compared with 31 (2 to 62) pre-operatively. Of 109 knee
with radiographs reviewed, 47 knees had radiolucent lines but none
showed evidence of loosening. Cite this article:
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
This retrospective study evaluated the midterm clinical and radiographic outcomes of a second-generation total knee replacement system. In a multicentre consecutive series of 1512 patients, 1970 knees were treated with the PFC Sigma knee system (Depuy, Warsaw, Indiana). The patients were reviewed for functional outcome, and underwent independent radiographic evaluation at a mean follow-up of 7.3 years (5 to 10). A total of 40 knees (2%) required revision, 17 (0.9%) for infection. The incidence of osteolysis was 2.2%. The ten-year survival with revision for any cause other than infection as the endpoint was 97.2% (95% CI 95.4 to 99.1). The PFC Sigma knee system appears to provide excellent results in the medium term.
We have examined the outcome of 400 consecutive patients who underwent total knee replacement with the Low Contact Stress mobile-bearing system between 1993 and 1994 and were followed up for a minimum of ten years. All operations were performed by surgeons in Christchurch, New Zealand, who used no other knee prosthesis during the study time. At ten years after operation 238 patients (244 knees) remained for independent clinical and radiological assessment. There was a significant improvement (p <
0.001) in the postoperative knee scores at one, three, seven and ten years, although a slight deterioration in the score occurred between seven and ten years which did not reach statistical significance. The survival for polyethylene wear or loosening was 97% (95% CI 96 to 98) and survival using reoperation for any cause was 92% (95% CI 90 to 94) at 12 years. Polyethylene wear was more common in the meniscal-bearing component, with five knees requiring revision and a further eight demonstrating early wear. Osteolysis was not seen in the rotating platform component, but was present in three of the meniscal-bearing knees. There was no association between the radiological alignment at one year and those knees that subsequently required revision. However, there was an association between the overall limb alignment and the Western Ontario McMasters University score (p <
0.001). The Low Contact Stress mobile-bearing total knee replacement has proved to be a reliable implant at ten years when used in primary knee replacement irrespective of the deformity and diagnosis.