We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same
We have studied the three-dimensional geometry of the proximal humerus on human cadaver specimens using a digitised measuring device linked to a computer. Our findings demonstrated the variable shape of the proximal humerus as well as its variable
We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement. Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity. Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p <
0.001) and reduced the mean curing time (−1.5 min) (p <
0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p <
0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were <
50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined. Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion >
90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.
Although much has been published on the causes of slipped upper femoral epiphysis and the results of treatment, little attention has been given to the mechanism of the slip. This study presents the results of the analysis of 13 adolescent femora, and the attempts to reproduce the radiological appearances of a typical slip. The mean age of the skeletons was 13 years (11 to 15). It was found that the internal bony architecture in the zone of the growth plate was such that a slip of the epiphysis on the metaphysis (in the normal meaning of the word slip) could not take place, largely relating to the presence of a tubercle of bone projecting down from the epiphysis. The only way that the appearance of a typical slipped upper femoral epiphysis could be reproduced was by rotating the epiphysis posteromedially on the metaphysis. The presence and size of this peg-like tubercle was shown radiologically by CT scanning in one pair of intact adolescent femurs.
We undertook a study on eight arms from fresh cadavers to define the clinical usefulness of the lesser sigmoid notch as a landmark when reconstructing the length of the neck of the radius in replacement of the head with a prosthesis. The head was resected and its height measured, along with several control measurements. This was compared with The results were highly reproducible with intra- and interclass correlations of >
0.99. The mean difference between the measurement on the excised head and the distance from the stump of the neck and the lesser sigmoid notch was −0.02 mm (−1.24 to +0.97). This difference was not statistically significant (p = 0.78). The proximal edge of the lesser sigmoid notch provides a reliable landmark for positioning a replacement of the radial head and may have clinical application.
Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus. Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus.
There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm3; 730 to 1850) and high wear rates (mean 205 mm3/year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume. Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting.
Biomechanical studies involving all-wire and hybrid types of circular frame have shown that oblique tibial fractures remain unstable when they are loaded. We have assessed a range of techniques for enhancing the fixation of these fractures. Eight models were constructed using Sawbones tibiae and standard Sheffield ring fixators, to which six additional fixation techniques were applied sequentially. The major component of displacement was shear along the obliquity of the fracture. This was the most sensitive to any change in the method of fixation. All additional fixation systems were found to reduce shear movement significantly, the most effective being push-pull wires and arched wires with a three-hole bend. Less effective systems included an additional half pin and arched wires with a shallower arc. Angled pins were more effective at reducing shear than transverse pins. The choice of additional fixation should be made after consideration of both the amount of stability required and the practicalities of applying the method to a particular fracture.
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.
We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiöld type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique.
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
We have investigated the anatomy of the proximal part of the ulna to assess its influence on the use of plates in the management of fractures at this site. We examined 54 specimens from cadavers. The mean varus angulation in the proximal third was 17.5° (11° to 23°) and the mean anterior deviation 4.5° (1° to 14°). These variations must be considered when applying plates to the dorsal surface of the ulna for Monteggia-type fractures. A pre-operative radiograph of the contralateral elbow may also be of value.
In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation.
Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 ( The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.
The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck. We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads. In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens. When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.
The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p <
0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p >
0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.
We have studied the effects of bupivacaine on human and bovine articular chondrocytes These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.