In a prospective study of 14 patients undergoing total hip replacement we have used dual-energy X-ray absorptiometry (DEXA) to investigate remodelling of the bone around two different designs of
We revised seven alumina-blasted
The tissues surrounding 65 cemented and 36
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted
In an attempt to increase the life of
We investigated the circulating levels of the main cytokines involved in bone resorption (IL-1β, IL-6, TNF-α), prostaglandins (PGE. 2. ) and metalloproteases (MMP-1), as possible early markers of osteolysis, in the serum of eight patients with periprosthetic osteolysis and ten patients without osteolysis. All had received a
We collected 16 samples of the membrane which surrounds loose hip prostheses from patients undergoing revision operations for aseptic loosening. To serve as the control group, samples of the synovial tissue and the fibrous capsular tissue were collected from 11 patients undergoing primary hip arthroplasties. Analyses of the expression levels of inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), and cytosolic phospholipase A. 2. (cPLA. 2. ) mRNAs were performed by a reverse transcription polymerase chain reaction, and the content of nitrite was measured by the Griess reaction using sodium nitrite as the standard. The expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs in the membranes were significantly higher than those in the control samples (p <
0.05). The expression levels of iNOS mRNA and the nitrite content in the membranes significantly correlated with those of TNF-α and cPLA. 2. mRNAs, respectively. In addition, the expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs were significantly higher in membranes from
We have studied the effect of hydroxyapatite (HA) coating in 15 ovariectomised and 15 normal rats which had had a sham procedure. Twenty-four weeks after operation, HA-coated implants were inserted into the intramedullary canal of the right femur and uncoated implants into the left femur. The prostheses were removed four weeks after implantation. Twelve specimens in each group had mechanical push-out tests. Sagittal sections of the other three were evaluated by SEM. The bone mineral density (BMD) of the dissected left tibia was measured by dual-energy x-ray absorptiometry. The difference in BMD between the control and ovariectomised tibiae was 35.01 mg/cm. 2. (95% CI, 26.60 to 43.42). The push-out strength of the HA-coated implants was higher than that of the uncoated implants in both groups (p <
0.0001), but the HA-coated implants of the ovariectomised group had a reduction in push-out strength of 40.3% compared with the control group (p <
0.0001). Our findings suggest that HA-coated implants may improve the fixation of a
Two acetabula which contained large bone allografts introduced at revision arthroplasty were obtained at post-mortem. The allografts had been placed in superior defects to support
Bone growth into
Our aim was to determine if the serum levels of bone-resorbing cytokines (IL-1β, TNF-α, IL-6, GM-CSF) are altered in patients with aseptic loosening of a total hip prosthesis, and if such levels are influenced by the type of implant. We determined cytokine levels in sera from 35 patients before revision for failed total hip arthroplasty and compared them with those in 25 healthy donors. We also assessed the soluble receptor of interleukin-2 (sIL-2r) in serum as an indication of a specific immune reaction against the implant. Our findings showed that the sIL-2r and TNF-α serum level did not change. The IL-6 level was not significantly altered, but was higher in patients with TiAlV prostheses than in those with a CrCoMo implant and in patients with cemented prostheses. The IL-1β level was found to be higher in those with a TiAlV cemented prosthesis than in the control group (p = 0.0001) and other groups of patients (p = 0.003 v uncemented TiAlV, p = 0.01 v cemented CrCoMo, p = 0.001 v uncemented CrCoMo). The GM-CSF level significantly increased in patients compared with healthy subjects (p = 0.008), and it was higher in those with cemented than with uncemented implants (p = 0.01). Only patients with
We have reviewed 70 patients with bilateral simultaneous total hip arthroplasties to determine the rate of failure and to compare polyethylene wear and osteolysis between an implant with a cobalt-chrome head and Hylamer liner with that of a zirconia head and Hylamer liner. The mean thickness of the polyethylene liner was 11.0 mm (8.8 to 12.2) in the hip with a zirconia head and 10.7 mm (8.8 to 12.2) in that with a cobalt-chrome head. At follow-up at 6.4 years no acetabular or femoral component had been revised for aseptic loosening and no acetabular or femoral component was loose according to radiological criteria in both the cemented and
Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied. It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.
This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured. Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum. The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.