Advertisement for orthosearch.org.uk
Results 1 - 20 of 49
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had 3D reconstructions. The interobserver reliability kappa value was 0.52 for radiographs, 0.71 for 2D CT scans, and 0.73 for a combination of 2D and 3D reconstruction CT scans. The median intraobserver reliability was 0.75 (interquartile range (IQR) 0.62 to 0.79) for radiographs, 0.77 (IQR 0.73 to 0.94) for 2D CT scans, and 0.89 (IQR 0.77 to 0.93) for the combination of 2D and 3D reconstruction. Validity analysis showed that accuracy significantly improved when using CT scans (p = 0.018 and p = 0.028 respectively). Conclusion. The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow. CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility. Cite this article: Bone Joint J 2020;102-B(8):1041–1047


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 674 - 679
1 May 2017
Nuttall D Birch A Haines JF Watts AC Trail IA

Aims. Radiostereometric analysis (RSA) allows an extremely accurate measurement of early micromotion of components following arthroplasty. . Patients and Methods. In this study, RSA was used to measure the migration of 11 partially cemented fluted pegged glenoid components in patients with osteoarthritis who underwent total shoulder arthroplasty using an improved surgical technique (seven men, four women, mean age 68). Patients were evaluated clinically using the American Shoulder and Elbow Surgeons (ASES) and Constant-Murley scores and by CT scans two years post-operatively. . Results. There were two patterns of migration, the first showing little, if any, migration and the second showing rotation by > 6° as early as three months post-operatively. At two years, these two groups could be confirmed on CT scans, one with osseointegration around the central peg, and the second with cystic changes. Patients with osteolysis around the central peg were those with early migration and those with osseointegration had minimal early migration. Both groups,however,had similar clinical results. . Conclusion. Rapid early migration associated with focal lucency and absence of osseointegration was observed in three of 11 glenoid components, suggesting that lack of initial stability leads to early movement and failure of osseointegration. Cite this article: Bone Joint J 2017;99-B:674–9


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 232 - 238
1 Feb 2020
Javed S Hadi S Imam MA Gerogiannis D Foden P Monga P

Aims. Accurate measurement of the glenoid version is important in performing total shoulder arthroplasty (TSA). Our aim was to evaluate the Ellipse method, which involves formally defining the vertical mid-point of the glenoid prior to measuring the glenoid version and comparing it with the ‘classic’ Friedman method. Methods. This was a retrospective study which evaluated 100 CT scans for patients who underwent a primary TSA. The glenoid version was measured using the Friedman and Ellipse methods by two senior observers. Statistical analyses were performed using the paired t-test for significance and the Bland-Altman plot for agreement. Results. The mean glenoid version was -3.11° (-23.8° to 17.9°) using the Friedman method and -1.95° (-29.8° to 24.6°) using the Ellipse method (p = 0.002). In 16 patients the difference between methods was greater than 5°, which we considered to be clinically significant. There was poor agreement between methods with relatively large 95% limits of agreement. There was excellent inter-rater agreement between the observers for the Ellipse method and similarly, the intrarater agreement was excellent with a repeatability coefficient of 0.94. Conclusion. We recommend the use of the Ellipse modification to define the mid glenoid point prior to measuring the glenoid version in patients undergoing TSA. Cite this article: Bone Joint J 2020;102-B(2):232–238


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 374 - 380
1 Mar 2016
Kocsis G Thyagarajan DS Fairbairn KJ Wallace WA

Aims. Glenoid bone loss can be a challenging problem when revising a shoulder arthroplasty. Precise pre-operative planning based on plain radiographs or CT scans is essential. We have investigated a new radiological classification system to describe the degree of medialisation of the bony glenoid and that will indicate the amount of bone potentially available for supporting a glenoid component. It depends on the relationship between the most medial part of the articular surface of the glenoid with the base of the coracoid process and the spinoglenoid notch: it classifies the degree of bone loss into three types. It also attempts to predict the type of glenoid reconstruction that may be possible (impaction bone grafting, structural grafting or simple non-augmented arthroplasty) and gives guidance about whether a pre-operative CT scan is indicated. Patients and Methods. Inter-method reliability between plain radiographs and CT scans was assessed retrospectively by three independent observers using data from 39 randomly selected patients. . Inter-observer reliability and test-retest reliability was tested on the same cohort using Cohen's kappa statistics. Correlation of the type of glenoid with the Constant score and its pain component was analysed using the Kruskal-Wallis method on data from 128 patients. Anatomical studies of the scapula were reviewed to explain the findings. Results. Excellent inter-method reliability, inter-observer and test-retest reliability were seen. The system did not correlate with the Constant score, but correlated well with its pain component. . Take home message: Our system of classification is a helpful guide to the degree of glenoid bone loss when embarking on revision shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:374–80


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1609 - 1617
1 Dec 2018
Malhas AM Granville-Chapman J Robinson PM Brookes-Fazakerley S Walton M Monga P Bale S Trail I

Aims. We present our experience of using a metal-backed prosthesis and autologous bone graft to treat gross glenoid bone deficiency. Patients and Methods. A prospective cohort study of the first 45 shoulder arthroplasties using the SMR Axioma Trabecular Titanium (TT) metal-backed glenoid with autologous bone graft. Between May 2013 and December 2014, 45 shoulder arthroplasties were carried out in 44 patients with a mean age of 64 years (35 to 89). The indications were 23 complex primary arthroplasties, 12 to revise a hemiarthroplasty or resurfacing, five for aseptic loosening of the glenoid, and five for infection. Results. Of the 45 patients, 16 had anatomical shoulder arthroplasties (ASA) and 29 had reverse shoulder arthroplasties (RSA). Postoperatively, 43/45 patients had a CT scan. In 41 of 43 patients (95%), the glenoid peg achieved > 50% integration. In 40 of 43 cases (93%), the graft was fully or partially integrated. There were seven revisions (16%) but only four (9%) required a change of baseplate. Four (25%) of the 16 ASAs were revised for instability or cuff failure. At two-year radiological follow-up, five of the 41 cases (11%) showed some evidence of lucent lines. Conclusion. The use of a metal baseplate with a trabecular titanium surface in conjunction with autologous bone graft is a reliable method of addressing glenoid bone defects in primary and revision RSA setting in the short term. ASAs have a higher rate of complications with this technique


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1377 - 1382
1 Oct 2013
Walch G Mesiha M Boileau P Edwards TB Lévigne C Moineau G Young A

Osteoarthritis results in changes in the dimensions of the glenoid. This study aimed to assess the size and radius of curvature of arthritic glenoids. A total of 145 CT scans were analysed, performed as part of routine pre-operative assessment before total shoulder replacement in 91 women and 54 men. Only patients with primary osteoarthritis and a concentric glenoid were included in the study. The CT scans underwent three-dimensional (3D) reconstruction and were analysed using dedicated computer software. The measurements consisted of maximum superoinferior height, anteroposterior width and a best-fit sphere radius of curvature of the glenoid. The mean height was 40.2 mm (. sd. 4.9), the mean width was 29 mm (. sd. 4.3) and the mean radius of curvature was 35.4 mm (. sd. 7.8). The measurements were statistically different in men and women and had a Gaussian distribution with marked variation. All measurements were greater than the known values in normal subjects. With current shoulder replacement systems using a unique backside radius of curvature for the glenoid component, there is a risk of undertaking excessive reaming to adapt the bone to the component resulting in sacrifice of subchondral bone or under-reaming and instability of the component due to a ’rocking horse‘ phenomenon. . Cite this article: Bone Joint J 2013;95-B:1377–82


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1080 - 1085
1 Aug 2016
Gauci MO Boileau P Baba M Chaoui J Walch G

Aims. Patient-specific glenoid guides (PSGs) claim an improvement in accuracy and reproducibility of the positioning of components in total shoulder arthroplasty (TSA). The results have not yet been confirmed in a prospective clinical trial. Our aim was to assess whether the use of PSGs in patients with osteoarthritis of the shoulder would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age of 71 years (53 to 81) awaiting TSA were enrolled in the study. Pre- and post-operative version and inclination of the glenoid were measured on CT scans, using 3D planning automatic software. During surgery, a congruent 3D-printed PSG was applied onto the glenoid surface, thus determining the entry point and orientation of the central guide wire used for reaming the glenoid and the introduction of the component. Manual segmentation was performed on post-operative CT scans to compare the planned and the actual position of the entry point (mm) and orientation of the component (°). Results. The mean error in the accuracy of the entry point was -0.1 mm (standard deviation (. sd. ) 1.4) in the horizontal plane, and 0.8 mm (. sd. 1.3) in the vertical plane. The mean error in the orientation of the glenoid component was 3.4° (. sd. 5.1°) for version and 1.8° (. sd. 5.3°) for inclination. Conclusion. Pre-operative planning with automatic software and the use of PSGs provides accurate and reproducible positioning and orientation of the glenoid component in anatomical TSA. Cite this article: Bone Joint J 2016;98-B:1080–5


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 927 - 933
1 Jul 2017
Poltaretskyi S Chaoui J Mayya M Hamitouche C Bercik MJ Boileau P Walch G

Aims. Restoring the pre-morbid anatomy of the proximal humerus is a goal of anatomical shoulder arthroplasty, but reliance is placed on the surgeon’s experience and on anatomical estimations. The purpose of this study was to present a novel method, ‘Statistical Shape Modelling’, which accurately predicts the pre-morbid proximal humeral anatomy and calculates the 3D geometric parameters needed to restore normal anatomy in patients with severe degenerative osteoarthritis or a fracture of the proximal humerus. Materials and Methods. From a database of 57 humeral CT scans 3D humeral reconstructions were manually created. The reconstructions were used to construct a statistical shape model (SSM), which was then tested on a second set of 52 scans. For each humerus in the second set, 3D reconstructions of four diaphyseal segments of varying lengths were created. These reconstructions were chosen to mimic severe osteoarthritis, a fracture of the surgical neck of the humerus and a proximal humeral fracture with diaphyseal extension. The SSM was then applied to the diaphyseal segments to see how well it predicted proximal morphology, using the actual proximal humeral morphology for comparison. Results. With the metaphysis included, mimicking osteoarthritis, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm) and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking a fracture of the surgical neck, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8 mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively. Conclusion. This study reports a novel, computerised method that accurately predicts the pre-morbid proximal humeral anatomy even in challenging situations. This information can be used in the surgical planning and operative reconstruction of patients with severe degenerative osteoarthritis or with a fracture of the proximal humerus. Cite this article: Bone Joint J 2017;99-B:927–33


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1539 - 1545
1 Nov 2015
Lenoir H Chammas M Micallef JP Lazerges C Waitzenegger T Coulet B

Determining and accurately restoring the flexion-extension axis of the elbow is essential for functional recovery after total elbow arthroplasty (TEA). We evaluated the effect of morphological features of the elbow on variations of alignment of the components at TEA. Morphological and positioning variables were compared by systematic CT scans of 22 elbows in 21 patients after TEA. There were five men and 16 women, and the mean age was 63 years (38 to 80). The mean follow-up was 22 months (11 to 44). The anterior offset and version of the humeral components were significantly affected by the anterior angulation of the humerus (p = 0.052 and p = 0.004, respectively). The anterior offset and version of the ulnar components were strongly significantly affected by the anterior angulation of the ulna (p < 0.001 and p < 0.001). The closer the anterior angulation of the ulna was to the joint, the lower the ulnar anterior offset (p = 0.030) and version of the ulnar component (p = 0.010). The distance from the joint to the varus angulation also affected the lateral offset of the ulnar component (p = 0.046). Anatomical variations at the distal humerus and proximal ulna affect the alignment of the components at TEA. This is explained by abutment of the stems of the components and is particularly severe when there are substantial deformities or the deformities are close to the joint. Cite this article: Bone Joint J 2015;97-B:1539–45


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 212 - 218
1 Feb 2018
Jungbluth P Tanner S Schneppendahl J Grassmann J Wild M Hakimi M Windolf J Laun R

Aims. The aim of this retrospective multicentre study was to evaluate mid-term results of the operative treatment of Monteggia-like lesions and to determine the prognostic factors that influence the clinical and radiological outcome. Patients and Methods. A total of 46 patients (27 women and 19 men), with a mean age of 57.7 years (18 to 84) who had sustained a Monteggia-like lesion were followed up clinically and radiologically after surgical treatment. The Mayo Modified Wrist Score (MMWS), Mayo Elbow Performance Score (MEPS), Broberg and Morrey Score, and Disabilities of the Arm, Shoulder and Hand (DASH) score were used for evaluation at a mean of 65 months (27 to 111) postoperatively. All ulnar fractures were stabilized using a proximally contoured or precontoured locking compression plate. Mason type I fractures of the radial head were treated conservatively, type II fractures were treated with reconstruction, and type III fractures with arthroplasty. All Morrey type II and III fractures of the coronoid process was stabilized using lag screws. Results. Good results were found for the MMWS, with a mean of 88.4 (40 to 100). There were 29 excellent results (63%), nine good (20%), seven satisfactory (15%), and one poor (2%). Excellent results were obtained for the MEPS, with a mean of 90.7 (70 to 100): 31 excellent results (68%), 13 good (28%), and two fair (4%). Good results were also found for the functional rating index of Broberg and Morrey, with a mean score of 86.6 (57 to 100). There were 16 excellent results (35%), 22 good (48%), six fair (13%), and two poor (4%). The mean DASH score was 15.1 (0 to 55.8). Two patients had delayed wound healing; four patients had nonunion requiring bone grafting. One patient had asymptomatic loosening of the radial head prosthesis. Conclusion. Monteggia-like lesions are rare. With correct identification, classification, and understanding using CT scans followed by appropriate surgical treatment that addresses all components of the injury, good to excellent mid-term results can be achieved. Cite this article: Bone Joint J 2018;100-B:212–18


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 268 - 276
1 Mar 2024
Park JH Lee JH Kim DY Kim HG Kim JS Lee SM Kim SC Yoo JC

Aims

This study aimed to assess the impact of using the metal-augmented glenoid baseplate (AGB) on improving clinical and radiological outcomes, as well as reducing complications, in patients with superior glenoid wear undergoing reverse shoulder arthroplasty (RSA).

Methods

From January 2016 to June 2021, out of 235 patients who underwent primary RSA, 24 received a superior-AGB after off-axis reaming (Group A). Subsequently, we conducted propensity score matching in a 1:3 ratio, considering sex, age, follow-up duration, and glenoid wear (superior-inclination and retroversion), and selected 72 well-balanced matched patients who received a standard glenoid baseplate (STB) after eccentric reaming (Group B). Superior-inclination, retroversion, and lateral humeral offset (LHO) were measured to assess preoperative glenoid wear and postoperative correction, as well as to identify any complications. Clinical outcomes were measured at each outpatient visit before and after surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1125 - 1132
1 Oct 2024
Luengo-Alonso G Valencia M Martinez-Catalan N Delgado C Calvo E

Aims

The prevalence of osteoarthritis (OA) associated with instability of the shoulder ranges between 4% and 60%. Articular cartilage is, however, routinely assessed in these patients using radiographs or scans (2D or 3D), with little opportunity to record early signs of cartilage damage. The aim of this study was to assess the prevalence and localization of chondral lesions and synovial damage in patients undergoing arthroscopic surgery for instablility of the shoulder, in order to classify them and to identify risk factors for the development of glenohumeral OA.

Methods

A total of 140 shoulders in 140 patients with a mean age of 28.5 years (15 to 55), who underwent arthroscopic treatment for recurrent glenohumeral instability, were included. The prevalence and distribution of chondral lesions and synovial damage were analyzed and graded into stages according to the division of the humeral head and glenoid into quadrants. The following factors that might affect the prevalence and severity of chondral damage were recorded: sex, dominance, age, age at the time of the first dislocation, number of dislocations, time between the first dislocation and surgery, preoperative sporting activity, Beighton score, type of instability, and joint laxity.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 663 - 667
1 Jun 2023
Youn S Rhee SM Cho S Kim C Lee J Rhee YG

Aims

The aim of this study was to investigate the outcomes of arthroscopic decompression of calcific tendinitis performed without repairing the rotator cuff defect.

Methods

A total of 99 patients who underwent treatment between December 2013 and August 2019 were retrospectively reviewed. Visual analogue scale (VAS) and American Shoulder and Elbow Surgeons (ASES) scores were reviewed pre- and postoperatively according to the location, size, physical characteristics, and radiological features of the calcific deposits. Additionally, the influence of any residual calcific deposits shown on postoperative radiographs was explored. The healing rate of the unrepaired cuff defect was determined by reviewing the 29 patients who had follow-up MRIs.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1158 - 1164
1 Oct 2024
Jakobi T Krieg I Gramlich Y Sauter M Schnetz M Hoffmann R Klug A

Aims

The aim of this study was to evaluate the outcome of complex radial head fractures at mid-term follow-up, and determine whether open reduction and internal fixation (ORIF) or radial head arthroplasty (RHA) should be recommended for surgical treatment.

Methods

Patients who underwent surgery for complex radial head fractures (Mason type III, ≥ three fragments) were divided into two groups (ORIF and RHA) and propensity score matching was used to individually match patients based on patient characteristics. Ultimately, 84 patients were included in this study. After a mean follow-up of 4.1 years (2.0 to 9.5), patients were invited for clinical and radiological assessment. The Mayo Elbow Performance Score (MEPS), Oxford Elbow Score (OES), and Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire score were evaluated.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 970 - 977
1 Sep 2024
De Rus Aznar I Ávila Lafuente JL Hachem A Díaz Heredia J Kany J Elhassan B Ruiz Ibán MÁ

Rotator cuff pathology is the main cause of shoulder pain and dysfunction in older adults. When a rotator cuff tear involves the subscapularis tendon, the symptoms are usually more severe and the prognosis after surgery must be guarded. Isolated subscapularis tears represent 18% of all rotator cuff tears and arthroscopic repair is a good alternative primary treatment. However, when the tendon is deemed irreparable, tendon transfers are the only option for younger or high-functioning patients. The aim of this review is to describe the indications, biomechanical principles, and outcomes which have been reported for tendon transfers, which are available for the treatment of irreparable subscapularis tears.

The best tendon to be transferred remains controversial. Pectoralis major transfer was described more than 30 years ago to treat patients with failed surgery for instability of the shoulder. It has subsequently been used extensively to manage irreparable subscapularis tendon tears in many clinical settings. Although pectoralis major reproduces the position and orientation of the subscapularis in the coronal plane, its position in the axial plane – anterior to the rib cage – is clearly different and does not allow it to function as an ideal transfer. Consistent relief of pain and moderate recovery of strength and function have been reported following the use of this transfer. In an attempt to improve on these results, latissimus dorsi tendon transfer was proposed as an alternative and the technique has evolved from an open to an arthroscopic procedure. Satisfactory relief of pain and improvements in functional shoulder scores have recently been reported following its use. Both pectoralis minor and upper trapezius transfers have also been used in these patients, but the outcomes that have been reported do not support their widespread use.

Cite this article: Bone Joint J 2024;106-B(9):970–977.