Periprosthetic joint infection (PJI) is a challenging complication of any arthroplasty procedure. We reviewed our use of static antibiotic-loaded cement spacers (ABLCSs) for staged management of PJI where segmental bone loss, ligamentous instability, or soft-tissue defects necessitate a static construct. We reviewed factors contributing to their failure and techniques to avoid these complications when using ABLCSs in this context. A retrospective analysis was conducted of 94 patients undergoing first-stage revision of an infected knee prosthesis between September 2007 and January 2020 at a single institution. Radiographs and clinical records were used to assess and classify the incidence and causes of static spacer failure. Of the 94 cases, there were 19 primary total knee arthroplasties (TKAs), ten revision TKAs (varus-valgus constraint), 20 hinged TKAs, one arthrodesis (nail), one failed spacer (performed elsewhere), 21 distal femoral endoprosthetic arthroplasties, and 22 proximal tibial arthroplasties.Aims
Methods
A total of 60 children and adolescents with rupture of the anterior cruciate ligament (ACL) was seen between 1980 and 1990. Observation of the 23 patients who were treated conservatively revealed that the natural history of the injury resulted in severe instability and poor function of the knee. Associated meniscal tears were present in 15 knees. Three osteochondral fractures occurred and osteoarthritic changes developed in ten knees. In 1990 therefore we introduced reconstruction of the ACL with a four-strand hamstring graft using an anatomical placement with transphyseal tunnels and
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article:
Previous studies of failure mechanisms leading
to revision total knee replacement (TKR) performed between 1986 and
2000 determined that many failed early, with a disproportionate
amount accounted for by infection and implant-associated factors
including wear, loosening and instability. Since then, efforts have
been made to improve implant performance and instruct surgeons in
best practice. Recently our centre participated in a multi-centre evaluation
of 844 revision TKRs from 2010 to 2011. The purpose was to report
a detailed analysis of failure mechanisms over time and to see if
failure modes have changed over the past 10 to 15 years. Aseptic
loosening was the predominant mechanism of failure (31.2%), followed
by instability (18.7%), infection (16.2%), polyethylene wear (10.0%),
arthrofibrosis (6.9%) and malalignment (6.6%). The mean time to
failure was 5.9 years (ten days to 31 years), 35.3% of all revisions
occurred at less than two years, and 60.2% in the first five years.
With improvements in implant and polyethylene manufacture, polyethylene
wear is no longer a leading cause of failure. Early mechanisms of
failure are primarily technical errors. In addition to improving
implant longevity, industry and surgeons must work together to decrease
these technical errors. All reports on failure of TKR contain patients
with unexplained pain who not infrequently have unmet expectations.
Surgeons must work to achieve realistic patient expectations pre-operatively,
and therefore, improve patient satisfaction post-operatively. Cite this article:
We analysed at a mean follow-up of 7.25 years the clinical and radiological outcome of 117 patients (125 knees) who had undergone a primary, cemented, modular Freeman-Samuelson total knee replacement. While the tibial and femoral components were cemented, the patellar component was uncemented. A surface-cementing technique was used to secure the tibial components. A total of 82 knees was available for radiological assessment. Radiolucent lines were seen in 41 knees (50%) and osteolytic lesions were seen in 13 knees (16%). Asymptomatic, rotational loosening of the patellar implant was seen in four patients and osteolysis was more common in patients with a patellar resurfacing. Functional outcome scores were available for 41 patients (41 knees, 35%) and the mean Western Ontario McMasters Universities score was 77.5 (
We investigated whether strontium-enriched calcium
phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results
in accelerated healing within the bone tunnel in reconstruction
of the anterior cruciate ligament (ACL). A total of 30 single-bundle
ACL reconstructions using tendo Achillis allograft were performed
in 15 rabbits. The graft on the tested limb was treated with Sr-CPC,
whereas that on the contralateral limb was untreated and served
as a control. At timepoints three, six, nine, 12 and 24 weeks after
surgery, three animals were killed for histological examination.
At six weeks, the graft–bone interface in the control group was
filled in with fibrovascular tissue. However, the gap in the Sr-CPC
group had already been completely filled in with new bone, and there
was evidence of the early formation of Sharpey fibres. At 24 weeks,
remodelling into a normal ACL–bone-like insertion was found in the
Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft
leads to accelerated graft healing within the bone tunnel in a rabbit
model of ACL reconstruction using Achilles tendon allograft. Cite this article:
The use of platelet-rich plasma (PRP) as an adjuvant
to tissue repair is gaining favour in orthopaedic surgery. Tunnel widening
after anterior cruciate ligament (ACL) reconstruction is a recognised
phenomenon that could compromise revision surgery. The purpose of
this study was to determine whether PRP might prevent tunnel widening
in ACL reconstruction. Patients undergoing ACL reconstruction using a hamstring graft
were randomly allocated either to have PRP introduced into the tunnels
peri-operatively or not. CT scanning of the knees was carried out
on the day after surgery and at three months post-operatively and
the width of the tunnels was measured. Patients were also evaluated
clinically at three months, when laxity was also measured. Each group comprised 25 patients, and at three months post-operatively
all were pain-free with stable knees, a negative Lachman test and
a good range of movement. Arthrometric results had improved significantly
in both groups (p <
0.001). Despite slightly less tunnel widening
in the PRP group, there was no significant difference between the
groups at the femoral opening or the mid-tunnel (p = 0.370 and p
= 0.363, respectively) nor at the tibial opening or mid-tunnel (p
= 0.333 and p = 0.177, respectively). We conclude that PRP has no significant effect in preventing
tunnel widening after ACL reconstruction. Cite this article:
While injury to the posterolateral corner is accepted as a relatively common occurrence associated with rupture of the anterior cruciate ligament, posteromedial meniscocapsular injury has not previously been recognised as such. In a prospective assessment of 183 consecutive reconstructions of the anterior cruciate ligament this injury was observed in 17 cases, giving it an incidence of 9.3%. Clinically, it was associated with a mild anteromedial rotatory subluxation and it is important not to confuse this with posterolateral rotatory subluxation. In no case was this injury identified by MRI. The possible long-term clinical relevance is discussed.
Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This This study has provided objective biomechanical data to support the use of trochleoplasty in the treatment of patellar instability associated with femoral trochlear dysplasia.
We report the clinical and radiographic outcome of a consecutive series of 138 hydroxyapatite-coated total knee replacements with a mean follow-up of 11 years (10 to 13). The patients were entered into a prospective study and all living patients (76 knees) were evaluated. The Hospital for Special Surgery knee score was obtained for comparison with the pre-operative situation. No patient was lost to follow-up. Radiographic assessment revealed no loosening. Seven prostheses have been revised, giving a cumulative survival rate of 93% at 13 years. We believe this to be the longest follow-up report available for an hydroxyapatite-coated knee replacement and the first for this design of Insall-Burstein II knee.