Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with
We performed a CT-based computer simulation study
to determine how the relationship between any inbuilt posterior
slope in the proximal tibial osteotomy and cutting jig rotational
orientation errors affect tibial component alignment in total knee
replacement. Four different
It has been suggested that an increased posterior
tibial slope (PTS) and a narrow notch width index (NWI) increase
the risk of anterior cruciate ligament (ACL) injury. The aim of
this study was to establish why there are conflicting reports on
their significance. A total of fifty patients with a ruptured ACL
and 50 patients with an intact ACL were included in the study. The
group with ACL rupture had a statistically significantly increased
PTS (p <
0.001) and a smaller NWI (p <
0.001) than the control
group. When a high PTS and/or a narrow NWI were defined as risk
factors for an ACL rupture, 80% of patients had at least one risk
factor present; only 24% had both factors present. In both groups
the PTS was negatively correlated to the NWI (correlation coefficient
= -0.28, p = 0.0052). Using a univariate model, PTS and NWI appear
to be correlated to rupture of the ACL. Using a logistic regression
model, the PTS (p = 0.006) and the NWI (p <
0.0001) remain significant
risk factors. From these results, either a steep PTS or a narrow
NWI predisposes an individual to ACL injury. Future studies should
consider these factors in combination rather than in isolation.
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial
Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more
The optimal management of the tibial slope in
achieving a high flexion angle in posterior-stabilised (PS) total
knee replacement (TKR) is not well understood, and most studies
evaluating the
Radiographs of 110 patients who had undergone 120 high tibial osteotomies (60 closed-wedge, 60 open-wedge) were assessed for
The purpose of this study was to evaluate the
change in sagittal tibiotalar alignment after total ankle arthroplasty (TAA)
for osteoarthritis and to investigate factors affecting the restoration
of alignment. . This retrospective study included 119 patients (120 ankles) who
underwent three component TAA using the Hintegra prosthesis. A total
of 63 ankles had anterior displacement of the talus before surgery
(group A), 49 had alignment in the normal range (group B), and eight
had posterior displacement of the talus (group C). Ankles in group
A were further sub-divided into those in whom normal alignment was
restored following TAA (41 ankles) and those with persistent displacement
(22 ankles). Radiographic and clinical results were assessed. Pre-operatively, the alignment in group A was significantly more
varus than that in group B, and the
Aims. The primary aim of this study was to determine the surgical team’s
learning curve for introducing robotic-arm assisted unicompartmental
knee arthroplasty (UKA) into routine surgical practice. The secondary
objective was to compare accuracy of implant positioning in conventional
jig-based UKA versus robotic-arm assisted UKA. Patients and Methods. This prospective single-surgeon cohort study included 60 consecutive
conventional jig-based UKAs compared with 60 consecutive robotic-arm
assisted UKAs for medial compartment knee osteoarthritis. Patients
undergoing conventional UKA and robotic-arm assisted UKA were well-matched
for baseline characteristics including a mean age of 65.5 years
(. sd. 6.8) vs 64.1 years (. sd. 8.7), (p = 0.31); a
mean body mass index of 27.2 kg.m2 (. sd. 2.7) vs 28.1 kg.m2
(. sd. 4.5), (p = 0.25); and gender (27 males: 33 females
vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning
curve were prospectively collected. These included operative times,
the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire
to assess preoperative stress levels amongst the surgical team,
accuracy of implant positioning, limb alignment, and postoperative
complications. Results. Robotic-arm assisted UKA was associated with a learning curve
of six cases for operating time (p < 0.001) and surgical team
confidence levels (p < 0.001). Cumulative robotic experience
did not affect accuracy of implant positioning (p = 0.52), posterior
condylar offset ratio (p = 0.71),
The aim of this study was to evaluate the risk
factors for dislocation of the bearing after a mobile-bearing Oxford medial
unicompartmental knee replacement (UKR) and to test the hypothesis
that surgical factors, as measured from post-operative radiographs,
are associated with its dislocation. From a total of 480 UKRs performed between 2001 and 2012, in
391 patients with a mean age of 66.5 years (45 to 82) (316 female,
75 male), we identified 17 UKRs where bearing dislocation occurred.
The post-operative radiological measurements of the 17 UKRs and
51 matched controls were analysed using conditional logistic regression analysis.
The post-operative radiological measurements included post-operative
change in limb alignment, the position of the femoral and tibial
components, the resection depth of the proximal tibia, and the femoral component-posterior
condyle classification. We concluded that a post-operative decrease in the posterior
tibial slope relative to the pre-operative value was the only significant
determinant of dislocation of the bearing after medial Oxford UKR
(odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative
posterior tibial slope <
8.45° and a difference between the pre-operative
and post-operative
Instability in flexion after total knee replacement
(TKR) typically occurs as a result of mismatched flexion and extension
gaps. The goals of this study were to identify factors leading to
instability in flexion, the degree of correction, determined radiologically,
required at revision surgery, and the subsequent clinical outcomes.
Between 2000 and 2010, 60 TKRs in 60 patients underwent revision
for instability in flexion associated with well-fixed components.
There were 33 women (55%) and 27 men (45%); their mean age was 65
years (43 to 82). Radiological measurements and the Knee Society
score (KSS) were used to assess outcome after revision surgery.
The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar
offset (p <
0.001), distalisation of the joint line (p <
0.001)
and increased
Anterior cruciate ligament (ACL) graft failure from rupture, attenuation, or malposition may cause recurrent subjective instability and objective laxity, and occurs in 3% to 22% of ACL reconstruction (ACLr) procedures. Revision ACLr is often indicated to restore knee stability, improve knee function, and facilitate return to cutting and pivoting activities. Prior to reconstruction, a thorough clinical and diagnostic evaluation is required to identify factors that may have predisposed an individual to recurrent ACL injury, appreciate concurrent intra-articular pathology, and select the optimal graft for revision reconstruction. Single-stage revision can be successful, although a staged approach may be used when optimal tunnel placement is not possible due to the position and/or widening of previous tunnels. Revision ACLr often involves concomitant procedures such as meniscal/chondral treatment, lateral extra-articular augmentation, and/or osteotomy. Although revision ACLr reliably restores knee stability and function, clinical outcomes and reoperation rates are worse than for primary ACLr. Cite this article:
Aims. This prospective randomised controlled trial was designed to
evaluate the outcome of both the MRI- and CT-based patient-specific
matched guides (PSG) from the same manufacturer. Patients and Methods. A total of 137 knees in 137 patients (50 men, 87 women) were
included, 67 in the MRI- and 70 in the CT-based PSG group. Their
mean age was 68.4 years (47.0 to 88.9). Outcome was expressed as
the biomechanical limb alignment (centre hip-knee-ankle: HKA-axis)
achieved post-operatively, the position of the individual components
within 3° of the pre-operatively planned alignment, correct planned
implant size and operative data (e.g. operating time and blood loss). Results. The patient demographics (e.g. age, body mass index), correct
planned implant size and operative data were not significantly different
between the two groups. The proportion of outliers in the coronal
and sagittal plane ranged from 0% to 21% in both groups. Only the
number of outliers for the
A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.Aims
Methods
This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.Aims
Methods
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).Aims
Methods
This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS). Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.Aims
Methods
We have previously reported the mid-term outcomes of revision total knee arthroplasty (TKA) for flexion instability. At a mean of four years, there were no re-revisions for instability. The aim of this study was to report the implant survivorship and clinical and radiological outcomes of the same cohort of of patients at a mean follow-up of ten years. The original publication included 60 revision TKAs in 60 patients which were undertaken between 2000 and 2010. The mean age of the patients at the time of revision TKA was 65 years, and 33 (55%) were female. Since that time, 21 patients died, leaving 39 patients (65%) available for analysis. The cumulative incidence of any re-revision with death as a competing risk was calculated. Knee Society Scores (KSSs) were also recorded, and updated radiographs were reviewed.Aims
Methods
A retrospective review was performed of patients
undergoing primary cementless total knee replacement (TKR) using
porous tantalum performed by a group of surgical trainees. Clinical
and radiological follow-up involved 79 females and 26 males encompassing
115 knees. The mean age was 66.9 years (36 to 85). Mean follow-up
was 7 years (2 to 11). Tibial and patellar components were porous
tantalum monoblock implants, and femoral components were posterior
stabilised (PS) in design with cobalt–chromium fibre mesh. Radiological
assessments were made for implant positioning, alignment, radiolucencies,
lysis, and loosening. There was 95.7% survival of implants. There
was no radiological evidence of loosening and no osteolysis found.
No revisions were performed for aseptic loosening. Average tibial
component alignment was 1.4° of varus (4°of valgus to 9° varus),
and 6.2° (3° anterior to 15° posterior) of
There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries. Cite this article:
The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral. The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype.Aims
Methods
The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints.Aims
Methods
Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively.Aims
Methods
The patient-acceptable symptom state (PASS) is a level of wellbeing, which is measured by the patient. The aim of this study was to determine if the proportion of patients who achieved an acceptable level of function (PASS) after medial unicompartmental knee arthroplasty (UKA) was different based on the status of the anterior cruciate ligament (ACL) at the time of surgery. A total of 114 patients who underwent UKA for isolated medial osteoarthritis (OA) of the knee were included in the study. Their mean age was 65 years (SD 10). No patient underwent a bilateral procedure. Those who had undergone ACL reconstruction during the previous five years were excluded. The Knee injury Osteoarthritis Outcome Score Activities of Daily Living (KOOS ADL) function score was used as the primary outcome measure with a PASS of 87.5, as described for total knee arthroplasty (TKA). Patients completed all other KOOS subscales, Lysholm score, the Western Ontario and McMaster Universities Osteoarthritis Index, and the Veterans Rand 12-item health survey score. Failure was defined as conversion to TKA.Aims
Methods
To determine the relationship between articular cartilage status and clinical outcomes after medial opening-wedge high tibial osteotomy (MOHTO) for medial compartmental knee osteoarthritis at intermediate follow-up. We reviewed 155 patients (155 knees) who underwent MOHTO from January 2008 to December 2016 followed by second-look arthroscopy with a mean 5.3-year follow-up (2.0 to 11.7). Arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system. Patients were divided into two groups based on the presence of normal or nearly normal quality cartilage in the medial femoral condyle: good (second-look arthroscopic) status (ICRS grade I or II; n = 70), and poor (second-look arthroscopic) status (ICRS grade III or IV; n = 85) groups at the time of second-look arthroscopy. Clinical outcomes were assessed using the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 36-Item Short Form survey.Aims
Methods
This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA). Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.Aims
Methods
Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
The cementless Oxford unicompartmental knee replacement
has been demonstrated to have superior fixation on radiographs and
a similar early complication rate compared with the cemented version.
However, a small number of cases have come to our attention where,
after an apparently successful procedure, the tibial component subsides into
a valgus position with an increased
Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.Aims
Methods
Debate has raged over whether a cruciate retaining
(CR) or a posterior stabilised (PS) total knee replacement (TKR) provides
a better range of movement (ROM) for patients. Various sub-sets
of CR design are frequently lumped together when comparing outcomes.
Additionally, multiple factors have been proven to influence the
rate of manipulation under anaesthetic (MUA) following TKR. The
purpose of this study was to determine whether different CR bearing
insert designs provide better ROM or different MUA rates. All primary
TKRs performed by two surgeons between March 2006 and March 2009
were reviewed and 2449 CR-TKRs were identified. The same CR femoral
component, instrumentation, and tibial base plate were consistently
used. In 1334 TKRs a CR tibial insert with 3°
The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA). A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.Aims
Methods
Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy.Aims
Methods
1. The surgical treatment of idiopathic aseptic necrosis of the femoral head has been reviewed in the light of experience gained from 240 hips operated upon. 2. When pain is not severe and the necrosis of bone as seen in serial radiographs is not rapidly progressive, simple observation and palliative medical treatment are indicated. 3. When pain disables the patient and collapse of the head is progressive, operation is indicated. If radiographs show necrosis limited to the anterior part of the head and sparing an arc of at least 20 degrees of the lateral part, either an osteotomy bringing the shaft into adduction and flexion or an "adjusted cup" arthroplasty is indicated, with a preference for the latter because it gives better results in a shorter time. 4. If at arthrotomy the necrosis appears to involve the
To establish our early clinical results of a new total knee arthroplasty (TKA) tibial component introduced in 2013 and compare it to other designs in use at our hospital during the same period. This is a retrospective study of 166 (154 patients) consecutive cemented, fixed bearing, posterior-stabilized (PS) TKAs (ATTUNE) at one hospital performed by five surgeons. These were compared with a reference cohort of 511 knees (470 patients) of other designs (seven manufacturers) performed at the same hospital by the same surgeons. There were no significant differences in age, sex, BMI, or follow-up times between the two cohorts. The primary outcome was revision performed or pending.Aims
Methods
We have compared a new technique of computer-assisted knee arthroplasty with the current conventional jig-based technique in 70 patients randomly allocated to receive either of the methods. Post-operative CT was performed according to the Perth CT Knee Arthroplasty protocol and pre- and post-operative Maquet views of the limb were taken. Intra-operative and peri-operative morbidity data were collected and blood loss measured. Post-operative CT showed a significant improvement in the alignment of the components using computer-assisted surgery in regard to femoral varus/valgus (p = 0.032), femoral rotation (p = 0.001), tibial varus/valgus (p = 0.047) tibial
A controlled study, comparing computer- and conventional jig-assisted total knee replacement in six cadavers is presented. In order to provide a quantitative assessment of the alignment of the replacements, a CT-based technique which measures seven parameters of alignment has been devised and used. In this a multi-slice CT machine scanned in 2.5 mm slices from the acetabular roof to the dome of the talus with the subject’s legs held in a standard position. The mechanical and anatomical axes were identified, from three-dimensional landmarks, in both anteroposterior and lateral planes. The coronal and sagittal alignment of the prosthesis was then measured against the axes. The rotation of the femoral component was measured relative to the transepicondylar axis. The rotation of the tibial component was measured with reference to the posterior tibial condyles and the tibial tuberosity. Coupled femorotibial rotational alignment was assessed by superimposition of the femoral and tibial axial images. The radiation dose was 2.7 mSV. The computer-assisted total knee replacements showed better alignment in rotation and flexion of the femoral component, the
The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other.Aims
Methods
To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps. In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used.Aims
Methods
The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded.Aims
Patients and Methods
Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless tibial components could safely be used in Japanese patients based on the size and shape of the tibia. The study involved 212 cementless Oxford UKAs which were undertaken in 174 patients in six hospitals. The medial eminence line (MEL), which is a line parallel to the tibial axis passing through the tip of medial intercondylar eminence, was drawn on preoperative radiographs. Knees were classified as having a very overhanging medial tibial condyle if this line passed medial to the medial tibial cortex. They were also classified as very small if a size A/AA tibial component was used.Aims
Methods
This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes. A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.Aims
Methods
Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article:
The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.Aims
Patients and Methods
This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced.Aims
Materials and Methods
Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (Aims
Patients and Methods
Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used. A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies.Aims
Materials and Methods
The primary aim of this study was to compare the knee-specific functional outcome of patellofemoral arthroplasty with total knee arthroplasty (TKA) in the management of patients with patellofemoral osteoarthritis. A total of 54 consecutive Avon patellofemoral arthroplasties were identified and propensity-score-matched to a group of 54 patients undergoing a TKA with patellar resurfacing for patellofemoral osteoarthritis. The Oxford Knee Score (OKS), the 12-Item Short-Form Health Survey (SF-12), and patient satisfaction were collected at a mean follow up of 9.2 years (8 to 15). Survival was defined by revision or intention to revise.Aims
Patients and Methods
The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases? A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS).Aims
Patients and Methods