Advertisement for orthosearch.org.uk
Results 1 - 50 of 96
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 3 | Pages 468 - 474
1 May 1993
Schuller H Dalstra M Huiskes R Marti R

In acetabular dysplasia, fixation of the acetabular component of a cemented total hip prosthesis may be insecure and superolateral bone grafts are often used to augment the acetabular roof. We used finite element analysis to study the mechanical importance of the lateral acetabular roof and found that the lateral acetabular rim plays an important role in the load transfer of the pelvic bone. When the superlateral rim was lacking, the load shifted to the posterosuperior rim and to the area of pubic support, and the stresses in all materials, especially in the cement and in the trabecular bone, increased greatly. At the cement-bone interface the tilting component of the shear stress increased threefold. In a model in which the dysplastic acetabulum was augmented by a rigidly fixed, load-transmitting bone graft, the stresses were considerably diminished


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1271 - 1273
1 Oct 2020
Scott CEH Simpson AHRW Pankaj P


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 935 - 935
1 Aug 2004
Sood M


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1135 - 1142
1 Aug 2012
Derikx LC van Aken JB Janssen D Snyers A van der Linden YM Verdonschot N Tanck E

Previously, we showed that case-specific non-linear finite element (FE) models are better at predicting the load to failure of metastatic femora than experienced clinicians. In this study we improved our FE modelling and increased the number of femora and characteristics of the lesions. We retested the robustness of the FE predictions and assessed why clinicians have difficulty in estimating the load to failure of metastatic femora. A total of 20 femora with and without artificial metastases were mechanically loaded until failure. These experiments were simulated using case-specific FE models. Six clinicians ranked the femora on load to failure and reported their ranking strategies. The experimental load to failure for intact and metastatic femora was well predicted by the FE models (R2 = 0.90 and R2 = 0.93, respectively). Ranking metastatic femora on load to failure was well performed by the FE models (τ = 0.87), but not by the clinicians (0.11 < τ < 0.42). Both the FE models and the clinicians allowed for the characteristics of the lesions, but only the FE models incorporated the initial bone strength, which is essential for accurately predicting the risk of fracture. Accurate prediction of the risk of fracture should be made possible for clinicians by further developing FE models.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm. 3. ) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 638 - 645
1 May 2020
Sternheim A Traub F Trabelsi N Dadia S Gortzak Y Snir N Gorfine M Yosibash Z

Aims. Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Methods. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves). Results. The sensitivity of SFR was 100% compared with 88% for the Mirels score, and the specificity of SFR was 67% compared with 38% for the Mirels score. The AUC was 0.905 for SFR compared with 0.578 for the Mirels score (p = 0.008). Conclusion. All the patients who sustained a pathological fracture of the femur had an SFR of > 1.48. CTFEA was far better at predicting the risk of fracture and its location accurately compared with the Mirels score. CTFEA is quick and automated and can be incorporated into the protocol of CT scanners. Cite this article: Bone Joint J 2020;102-B(5):638–645


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 33 - 40
1 Jul 2020
Gustafson JA Pourzal R Levine BR Jacobs JJ Lundberg HJ

Aims. The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Methods. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour. Results. The model compared well to deformed microgrooves from the retrieved implants, predicting changes in microgroove height (mean 1.1 μm (0.2 to 1.3)) and width (mean 7.5 μm (1.0 to 18.5)) within the range of measured changes in height (mean 1.4 μm (0.4 to 2.3); p = 0.109) and width (mean 12.0 μm (1.5 to 25.4); p = 0.470). Consistent with benchtop studies, our model found that increasing assembly load magnitude led to increased taper engagement, contact pressure, and permanent deformation of the stem taper microgrooves. Interestingly, our model found assemblies using three hits at low loads (4 kN) led to decreased taper engagement, contact pressures and microgroove deformations throughout the stem taper compared with tapers assembled with one hit at the same magnitude. Conclusion. These findings suggest additional assembly hits at low loads lead to inferior taper interlock strength compared with one firm hit, which may be influenced by loading rate or material strain hardening. These unique models can estimate microgroove deformations representative of real contact mechanics seen on retrievals, which will enable us to better understand how both surgeon assembly techniques and implant design affect taper interlock strength. Cite this article: Bone Joint J 2020;102-B(7 Supple B):33–40


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 68 - 74
1 Jan 2019
Klemt C Toderita D Nolte D Di Federico E Reilly P Bull AMJ

Aims. Patients with recurrent anterior dislocation of the shoulder commonly have an anterior osseous defect of the glenoid. Once the defect reaches a critical size, stability may be restored by bone grafting. The critical size of this defect under non-physiological loading conditions has previously been identified as 20% of the length of the glenoid. As the stability of the shoulder is load-dependent, with higher joint forces leading to a loss of stability, the aim of this study was to determine the critical size of an osseous defect that leads to further anterior instability of the shoulder under physiological loading despite a Bankart repair. Patients and Methods. Two finite element (FE) models were used to determine the risk of dislocation of the shoulder during 30 activities of daily living (ADLs) for the intact glenoid and after creating anterior osseous defects of increasing magnitudes. A Bankart repair was simulated for each size of defect, and the shoulder was tested under loading conditions that replicate in vivo forces during these ADLs. The critical size of a defect was defined as the smallest osseous defect that leads to dislocation. Results. The FE models showed a high risk of dislocation during ADLs after a Bankart repair for anterior defects corresponding to 16% of the length of the glenoid. Conclusion. This computational study suggests that bone grafting should be undertaken for an anterior osseous defect in the glenoid of more than 16% of its length rather than a solely soft-tissue procedure, in order to optimize stability by restoring the concavity of the glenoid


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 895 - 900
1 Jul 2012
Gill IPS Webb J Sloan K Beaver RJ

We present a series of 35 patients (19 men and 16 women) with a mean age of 64 years (36.7 to 75.9), who underwent total hip replacement using the ESKA dual-modular short stem with metal on-polyethylene bearing surfaces. This implant has a modular neck section in addition to the modular head. Of these patients, three presented with increasing post-operative pain due to pseudotumour formation that resulted from corrosion at the modular neck-stem junction. These patients underwent further surgery and aseptic lymphocytic vaculitis associated lesions were demonstrated on histological analysis. Retrieval analysis of two modular necks showed corrosion at the neck-stem taper. Blood cobalt and chromium levels were measured at a mean of nine months (3 to 28) following surgery. These were compared with the levels in seven control patients (three men and four women) with a mean age of 53.4 years (32.1 to 64.1), who had an identical prosthesis and articulation but with a prosthesis that had no modularity at neck-stem junction. The mean blood levels of cobalt in the study group were raised at 50.75 nmol/l (5 to 145) compared with 5.6 nmol/l (2 to 13) in control patients. Corrosion at neck-stem tapers has been identified as an important source of metal ion release and pseudotumour formation requiring revision surgery. Finite element modelling of the dual modular stem demonstrated high stresses at the modular stem-neck junction. Dual modular cobalt-chrome hip prostheses should be used with caution due to these concerns


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 492 - 497
1 Apr 2015
Ike H Inaba Y Kobayashi N Yukizawa Y Hirata Y Tomioka M Saito T

In this study we used subject-specific finite element analysis to investigate the mechanical effects of rotational acetabular osteotomy (RAO) on the hip joint and analysed the correlation between various radiological measurements and mechanical stress in the hip joint. We evaluated 13 hips in 12 patients (two men and ten women, mean age at surgery 32.0 years; 19 to 46) with developmental dysplasia of the hip (DDH) who were treated by RAO. Subject-specific finite element models were constructed from CT data. The centre–edge (CE) angle, acetabular head index (AHI), acetabular angle and acetabular roof angle (ARA) were measured on anteroposterior pelvic radiographs taken before and after RAO. The relationship between equivalent stress in the hip joint and radiological measurements was analysed. The equivalent stress in the acetabulum decreased from 4.1 MPa (2.7 to 6.5) pre-operatively to 2.8 MPa (1.8 to 3.6) post-operatively (p < 0.01). There was a moderate correlation between equivalent stress in the acetabulum and the radiological measurements: CE angle (R = –0.645, p < 0.01); AHI (R = –0.603, p < 0.01); acetabular angle (R = 0.484, p = 0.02); and ARA (R = 0.572, p < 0.01). The equivalent stress in the acetabulum of patients with DDH decreased after RAO. Correction of the CE angle, AHI and ARA was considered to be important in reducing the mechanical stress in the hip joint. Cite this article: Bone Joint J 2015;97-B:492–7


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 751 - 756
1 Jun 2008
Terrier A Reist A Merlini F Farron A

Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0° to 150° of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90° of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it. This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied. It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1409 - 1418
1 Nov 2006
Scheerlinck T Casteleyn P

We undertook a review of the literature relating to the two basic stem designs in use in cemented hip replacement, namely loaded tapers or force-closed femoral stems, and the composite beam or shape-closed designs. The associated stem fixation theory as understood from in vitro studies and finite element modelling were examined with reference to the survivorship results for each of the concepts of fixation. It is clear that both design principles are capable of producing successful long-term results, providing that their specific requirements of stem metallurgy, shape and surface finish, preparation of the bone and handling of the cement are observed


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims

The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling.

Methods

Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 783 - 791
1 Aug 2024
Tanaka S Fujii M Kawano S Ueno M Nagamine S Mawatari M

Aims

The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia.

Methods

We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure.


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1078 - 1085
1 Oct 2023
Cance N Batailler C Shatrov J Canetti R Servien E Lustig S

Aims

Tibial tubercle osteotomy (TTO) facilitates surgical exposure and protects the extensor mechanism during revision total knee arthroplasty (rTKA). The purpose of this study was to determine the rates of bony union, complications, and reoperations following TTO during rTKA, to assess the functional outcomes of rTKA with TTO at two years’ minimum follow-up, and to identify the risk factors of failure.

Methods

Between January 2010 and September 2020, 695 rTKAs were performed and data were entered into a prospective database. Inclusion criteria were rTKAs with concomitant TTO, without extensor mechanism allograft, and a minimum of two years’ follow-up. A total of 135 rTKAs were included, with a mean age of 65 years (SD 9.0) and a mean BMI of 29.8 kg/m2 (SD 5.7). The most frequent indications for revision were infection (50%; 68/135), aseptic loosening (25%; 34/135), and stiffness (13%; 18/135). Patients had standardized follow-up at six weeks, three months, six months, and annually thereafter. Complications and revisions were evaluated at the last follow-up. Functional outcomes were assessed using the Knee Society Score (KSS) and range of motion.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims

A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting.

Methods

This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1292 - 1300
1 Jul 2021
Märtens N Heinze M Awiszus F Bertrand J Lohmann CH Berth A

Aims

The purpose of this study was to compare clinical results, long-term survival, and complication rates of stemless shoulder prosthesis with stemmed anatomical shoulder prostheses for treatment of osteoarthritis and to analyze radiological bone changes around the implants during follow-up.

Methods

A total of 161 patients treated with either a stemmed or a stemless shoulder arthroplasty for primary osteoarthritis of the shoulder were evaluated with a mean follow-up of 118 months (102 to 158). The Constant score (CS), the Disabilities of the Arm, Shoulder and Hand (DASH) score, and active range of motion (ROM) were recorded. Radiological analysis for bone adaptations was performed by plain radiographs. A Kaplan-Meier survivorship analysis was calculated and complications were noted.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 76 - 82
1 Jan 2022
ten Brinke B Hesseling B Eygendaal D Hoelen MA Mathijssen NMC

Aims

Stemless humeral implants have been developed to overcome stem-related complications in total shoulder arthroplasty (TSA). However, stemless implant designs may hypothetically result in less stable initial fixation, potentially affecting long-term survival. The aim of this study is to investigate early fixation and migration patterns of the stemless humeral component of the Simpliciti Shoulder System and to evaluate clinical outcomes.

Methods

In this prospective cohort study, radiostereometric analysis (RSA) radiographs were obtained in 24 patients at one day, six weeks, six months, one year, and two years postoperatively. Migration was calculated using model-based RSA. Clinical outcomes were evaluated using the visual analogue scale (VAS), the Oxford Shoulder Score (OSS), the Constant-Murley Score (CMS), and the Disabilities of the Arm, Shoulder and Hand (DASH) score.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs.

Methods

In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1414 - 1420
1 Aug 2021
Wellings EP Houdek MT Owen AR Bakri K Yaszemski MJ Sim FH Moran SL Rose PS

Aims

Orthopaedic and reconstructive surgeons are faced with large defects after the resection of malignant tumours of the sacrum. Spinopelvic reconstruction is advocated for resections above the level of the S1 neural foramina or involving the sacroiliac joint. Fixation may be augmented with either free vascularized fibular flaps (FVFs) or allograft fibular struts (AFSs) in a cathedral style. However, there are no studies comparing these reconstructive techniques.

Methods

We reviewed 44 patients (23 female, 21 male) with a mean age of 40 years (SD 17), who underwent en bloc sacrectomy for a malignant tumour of the sacrum with a reconstruction using a total (n = 20), subtotal (n = 2), or hemicathedral (n = 25) technique. The reconstructions were supplemented with a FVF in 25 patients (57%) and an AFS in 19 patients (43%). The mean length of the strut graft was 13 cm (SD 4). The mean follow-up was seven years (SD 5).


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims

Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading.

Methods

A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 338 - 346
1 Feb 2021
Khow YZ Liow MHL Lee M Chen JY Lo NN Yeo SJ

Aims

This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA.

Methods

Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 861 - 867
1 Jul 2020
Hiranaka T Yoshikawa R Yoshida K Michishita K Nishimura T Nitta S Takashiba K Murray D

Aims

Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless tibial components could safely be used in Japanese patients based on the size and shape of the tibia.

Methods

The study involved 212 cementless Oxford UKAs which were undertaken in 174 patients in six hospitals. The medial eminence line (MEL), which is a line parallel to the tibial axis passing through the tip of medial intercondylar eminence, was drawn on preoperative radiographs. Knees were classified as having a very overhanging medial tibial condyle if this line passed medial to the medial tibial cortex. They were also classified as very small if a size A/AA tibial component was used.


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 610 - 614
1 May 2019
Aibinder WR Bartels DW Sperling JW Sanchez-Sotelo J

Aims

Shoulder arthroplasty using short humeral components is becoming increasingly popular. Some such components have been associated with relatively high rates of adverse radiological findings. The aim of this retrospective review was to evaluate the radiological humeral bone changes and mechanical failure rates with implantation of a short cementless humeral component in anatomical (TSA) and reverse shoulder arthroplasty (RSA).

Patients and Methods

A total of 100 shoulder arthroplasties (35 TSA and 65 RSA) were evaluated at a mean of 3.8 years (3 to 8.3). The mean age at the time of surgery was 68 years (31 to 90). The mean body mass index was 32.7 kg/m2 (17.3 to 66.4).


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1100 - 1105
1 Aug 2018
Howard EL Shepherd KL Cribb G Cool P

Aims

The aim of this study was to validate the Mirels score in predicting pathological fractures in metastatic disease of the lower limb.

Patients and Methods

A total of 62 patients with confirmed metastatic disease met the inclusion criteria. Of the 62 patients, 32 were female and 30 were male. The mean age of patients was 65 years (35 to 89). The primary malignancy originated from the breast in 27 (44%) patients, prostate in 15 (24%) patients, kidney in seven (11%), and lung in four (6%) of patients. One patient (2%) had metastatic carcinoma from the lacrimal gland, two patients (3%) had multiple myeloma, one patient (2%) had lymphoma of bone, and five patients (8%) had metastatic carcinoma of unknown primary. Plain radiographs at the time of initial presentation were scored using Mirels system by the four authors. The radiographic components of the score (anatomical site, size, and radiographic appearance) were scored two weeks apart. Inter- and intraobserver reliability were calculated with Fleiss’ kappa test. Bland-Altman plots were created to compare the variances of the individual components of the score and the total Mirels score.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 845 - 852
1 Jul 2018
Langston J Pierrepont J Gu Y Shimmin A

Aims

It is important to consider sagittal pelvic rotation when introducing the acetabular component at total hip arthroplasty (THA). The purpose of this study was to identify patients who are at risk of unfavourable pelvic mobility, which could result in poor outcomes after THA.

Patients and Methods

A consecutive series of 4042 patients undergoing THA had lateral functional radiographs and a low-dose CT scan to measure supine pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar lordotic angle, and lumbar flexion. Changes in pelvic tilt from supine-to-standing positions and supine-to-flexed-seated positions were determined. A change in pelvic tilt of 13° between positions was deemed unfavourable as it alters functional anteversion by 10° and effectively places the acetabular component outside the safe zone of orientation.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1310 - 1319
1 Oct 2018
Langton DJ Wells SR Joyce TJ Bowsher JG Deehan D Green S Nargol AVF Holland JP

Aims

There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs.

Patients and Methods

We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 915 - 921
1 Aug 2019
Beckers L Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA.

Patients and Methods

In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 960 - 969
1 Aug 2019
Odgaard A Laursen MB Gromov K Troelsen A Kristensen PW Schrøder H Madsen F Overgaard S

Aims

The aim of this study was to give estimates of the incidence of component incompatibility in hip and knee arthroplasty and to test the effect of an online, real-time compatibility check.

Materials and Methods

Intraoperative barcode registration of arthroplasty implants was introduced in Denmark in 2013. We developed a compatibility database and, from May 2017, real-time compatibility checking was implemented and became part of the registration. We defined four classes of component incompatibility: A-I, A-II, B-I, and B-II, depending on an assessment of the level of risk to the patient (A/B), and on whether incompatibility was knowingly accepted (I/II).


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 113 - 120
1 Jan 2019
Scholes CJ Ebrahimi M Farah SB Field C Cordingley R Kerr D Kohan L

Aims

The aim of this study was to report the implant survival and patient-reported outcome measures (PROMs) in a consecutive series of patients aged less than 50 years at the time of arthroplasty using the Birmingham Hip Resurfacing system (BHR), with a minimum follow-up of ten years.

Patients and Methods

A total of 226 patients with osteoarthritis of the hip, who underwent BHR and presented to a single surgeon, were included in the study. Survival of the implant was confirmed by cross-checking with the Australian Orthopaedic Association National Joint Replacement Registry. Kaplan–Meier survival curves with 95% confidence intervals (CIs) were constructed. Pre- and postoperative PROMs were compared with t-tests, and postoperative scores were compared using anchor analysis with age and gender matched normative data.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 295 - 300
1 Mar 2013
Cawley DT Kelly N McGarry JP Shannon FJ

The optimum cementing technique for the tibial component in cemented primary total knee replacement (TKR) remains controversial. The technique of cementing, the volume of cement and the penetration are largely dependent on the operator, and hence large variations can occur. Clinical, experimental and computational studies have been performed, with conflicting results. Early implant migration is an indication of loosening. Aseptic loosening is the most common cause of failure in primary TKR and is the product of several factors. Sufficient penetration of cement has been shown to increase implant stability.

This review discusses the relevant literature regarding all aspects of the cementing of the tibial component at primary TKR.

Cite this article: Bone Joint J 2013;95-B:295–300.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 44 - 49
1 Jan 2018
Berstock JR Whitehouse MR Duncan CP

Aims

To present a surgically relevant update of trunnionosis.

Materials and Methods

Systematic review performed April 2017.


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1496 - 1501
1 Nov 2017
Bali N Aktselis I Ramasamy A Mitchell S Fenton P

Aims

There has been an evolution recently in the management of unstable fractures of the ankle with a trend towards direct fixation of a posterior malleolar fragment. Within these fractures, Haraguchi type 2 fractures extend medially and often cannot be fixed using a standard posterolateral approach. Our aim was to describe the posteromedial approach to address these fractures and to assess its efficacy and safety.

Patients and Methods

We performed a review of 15 patients with a Haraguchi type 2 posterior malleolar fracture which was fixed using a posteromedial approach. Five patients underwent initial temporary spanning external fixation. The outcome was assessed at a median follow-up of 29 months (interquartile range (IQR) 17 to 36) using the Olerud and Molander score and radiographs were assessed for the quality of the reduction.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 415 - 424
1 Apr 2018
Tambe AD Panikkar SJ Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS) is a complex 3D deformity of the spine. Its prevalence is between 2% and 3% in the general population, with almost 10% of patients requiring some form of treatment and up to 0.1% undergoing surgery. The cosmetic aspect of the deformity is the biggest concern to the patient and is often accompanied by psychosocial distress. In addition, severe curves can cause cardiopulmonary distress. With proven benefits from surgery, the aims of treatment are to improve the cosmetic and functional outcomes. Obtaining correction in the coronal plane is not the only important endpoint anymore. With better understanding of spinal biomechanics and the long-term effects of multiplanar imbalance, we now know that sagittal balance is equally, if not more, important. Better correction of deformities has also been facilitated by an improvement in the design of implants and a better understanding of metallurgy. Understanding the unique character of each deformity is important. In addition, using the most appropriate implant and applying all the principles of correction in a bespoke manner is important to achieve optimum correction.

In this article, we review the current concepts in AIS surgery.

Cite this article: Bone Joint J 2018;100-B:415–24.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 973 - 983
1 Jul 2018
Schmal H Froberg L S. Larsen M Südkamp NP Pohlemann T Aghayev E Goodwin Burri K

Aims

The best method of treating unstable pelvic fractures that involve the obturator ring is still a matter for debate. This study compared three methods of treatment: nonoperative, isolated posterior fixation and combined anteroposterior stabilization.

Patients and Methods

The study used data from the German Pelvic Trauma Registry and compared patients undergoing conservative management (n = 2394), surgical treatment (n = 1345) and transpubic surgery, including posterior stabilization (n = 730) with isolated posterior osteosynthesis (n = 405) in non-complex Type B and C fractures that only involved the obturator ring anteriorly. Calculated odds ratios were adjusted for potential confounders. Outcome criteria were intraoperative and general short-term complications, the incidence of nerve injuries, and mortality.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis.

In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone.

We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 301 - 304
1 Mar 2013
Brennan SA Devitt BM O’Neill CJ Nicholson P

Focal femoral inlay resurfacing has been developed for the treatment of full-thickness chondral defects of the knee. This technique involves implanting a defect-sized metallic or ceramic cap that is anchored to the subchondral bone through a screw or pin. The use of these experimental caps has been advocated in middle-aged patients who have failed non-operative methods or biological repair techniques and are deemed unsuitable for conventional arthroplasty because of their age. This paper outlines the implant design, surgical technique and biomechanical principles underlying their use. Outcomes following implantation in both animal and human studies are also reviewed.

Cite this article: Bone Joint J 2013;95-B:301–4.


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this.

The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture.

A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test.

The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence.

This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor.

Cite this article: Bone Joint J 2014;96-B:1378–84.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 435 - 438
1 Apr 2011
Gilbody J

Aseptic loosening of the acetabular component continues to be the most common indication for revision of total hip replacements in younger patients. Early in the evolution of the cemented hip, arthroplasty surgeons switched from removal to retention of the acetabular subchondral bone plate, theorising that unfavourable mechanical forces were the cause of loosening at the bone-cement interface.

It is now known that the cause of aseptic loosening is probably biological rather than mechanical and removing the subchondral bone plate may enhance biological fixation of cement to bone. With this in mind, perhaps it is time to revive removal of the subchondral bone as a standard part of acetabular preparation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 730 - 735
1 Jun 2016
Bsat S Frei H Beaulé PE

The acetabular labrum is a soft-tissue structure which lines the acetabular rim of the hip joint. Its role in hip joint biomechanics and joint health has been of particular interest over the past decade. In normal hip joint biomechanics, the labrum is crucial in retaining a layer of pressurised intra-articular fluid for joint lubrication and load support/distribution. Its seal around the femoral head is further regarded as a contributing to hip stability through its suction effect. The labrum itself is also important in increasing contact area thereby reducing contact stress. Given the labrum’s role in normal hip joint biomechanics, surgical techniques for managing labral damage are continuously evolving as our understanding of its anatomy and function continue to progress. The current paper aims to review the anatomy and biomechanical function of the labrum and how they are affected by differing surgical techniques.

Take home message: The acetabular labrum plays a critical role in hip function and maintaining and restoring its function during surgical intervention remain an essential goal.

Cite this article: Bone Joint J 2016;98-B:730–5.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 917 - 924
1 Jul 2016
Whittaker RK Hothi HS Meswania JM Berber R Blunn GW Skinner JA Hart AJ

Aims

Surgeons have commonly used modular femoral heads and stems from different manufacturers, although this is not recommended by orthopaedic companies due to the different manufacturing processes.

We compared the rate of corrosion and rate of wear at the trunnion/head taper junction in two groups of retrieved hips; those with mixed manufacturers (MM) and those from the same manufacturer (SM).

Materials and Methods

We identified 151 retrieved hips with large-diameter cobalt-chromium heads; 51 of two designs that had been paired with stems from different manufacturers (MM) and 100 of seven designs paired with stems from the same manufacturer (SM). We determined the severity of corrosion with the Goldberg corrosion score and the volume of material loss at the head/stem junction. We used multivariable statistical analysis to determine if there was a significant difference between the two groups.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 884 - 891
1 Jul 2016
Elliott DS Newman KJH Forward DP Hahn DM Ollivere B Kojima K Handley R Rossiter ND Wixted JJ Smith RM Moran CG

This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This ‘bone-healing unit’ produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff’s law, Perren’s strain theory and Frost’s concept of the “mechanostat”. In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture – healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft.

Cite this article: Bone Joint J 2016;98-B:884–91.