Advertisement for orthosearch.org.uk
Results 1 - 49 of 49
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 752 - 760
1 Jun 2007
Yamada Y Toritsuka Y Horibe S Sugamoto K Yoshikawa H Shino K

We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the in vivo three-dimensional movement of the patella. Flexion, tilt and spin of the patella were described in terms of rotation angles from 0°. The location of the patella and the tibial tubercle were evaluated using parameters expressed as percentage patellar shift and percentage tubercle shift. Patellar inclination to the femur was also measured and patellofemoral contact was qualitatively and quantitatively analysed. The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 746 - 751
1 Jun 2007
Yamada Y Toritsuka Y Yoshikawa H Sugamoto K Horibe S Shino K

We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° . sd. 6.7° for patients and 11.9° . sd. 3.6° for the control group (p < 0.001). The mean height of the articular cartilage was 91.3° . sd. 8.3° for the patients and 83.3° . sd. 7.7° for the control group (p = 0.03), suggesting a wider convex trochlea in the patients with recurrent dislocation of the patella caused by the proximally-extended convex area. The lateral border of the articular cartilage of the trochlea in the patients was more laterally located than in the control group. Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement. We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 140 - 146
1 Jan 1997
Robinson RP Simonian PT Gradisar IM Ching RP

A three-dimensional computer model of a total hip replacement was used to examine the relationship between the position of the components, the range of motion and the prosthetic joint contact area. Horizontal acetabular positions with small amounts of acetabular and femoral anteversion provide the largest contact areas, but result in limited joint movement. These data will allow surgeons to select implant positions that will provide the largest possible joint contact area for a given joint range of motion although these are conflicting goals. In some component positions a truncated spherical prosthetic head resulted in smaller contact areas than a completely spherical head


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 1 | Pages 94 - 99
1 Jan 1988
Bradley J FitzPatrick D Daniel D Shercliff T O'Connor J

We have studied the kinematics of the knee in the sagittal plane, using a four-bar linkage as model, and assuming that a "neutral fibre" in each ligament remains isometric throughout flexion. We devised a computer program to calculate the distance separating any pair of points, one on each bone, for various cruciate attachments at various angles of flexion. The parameters for the linkage in four cadaveric knees were obtained by marking the centre of attachment of the cruciate ligaments with tacks and taking lateral radiographs. The movements of the bones were then calculated, in the computer model, for various attachments of "replacement" ligament fibres, the distance between the attachment sites being plotted against the angle of flexion. It was then possible to define zones around the isometric attachment points within which changes in length would be predictable. Our results show that the position of the femoral sites of attachment of both anterior and posterior cruciate replacement was more critical than that of the tibial attachments


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 104 - 109
1 Mar 2024
Sugano N Maeda Y Fuji H Tamura K Nakamura N Takashima K Uemura K Hamada H

Aims

Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component.

Methods

We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1102 - 1103
1 Oct 2022
Haddad FS


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 12 - 18
1 Jan 2022
Weil S Arnander M Pearse Y Tennent D

Aims

The amount of glenoid bone loss is an important factor in deciding between soft-tissue and bony reconstruction when managing anterior shoulder instability. Accurate and reproducible measurement of glenoid bone loss is therefore vital in evaluation of shoulder instability and recommending specific treatment. The aim of this systematic review is to identify the range methods and measurement techniques employed in clinical studies treating glenoid bone loss.

Methods

A systematic review of the PubMed, MEDLINE, and Embase databases was undertaken to cover a ten-year period from February 2011 to February 2021. We identified clinical studies that incorporated bone loss assessment in the methodology as part of the decision-making in the management of patients with anterior shoulder instability. The Preferred Reporting Items for Systematic Reviews (PRISMA) were used.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1442 - 1448
1 Sep 2021
McDonnell JM Evans SR McCarthy L Temperley H Waters C Ahern D Cunniffe G Morris S Synnott K Birch N Butler JS

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks.

Cite this article: Bone Joint J 2021;103-B(9):1442–1448.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 51 - 58
1 Jun 2021
Yang J Heckmann ND Nahhas CR Salzano MB Ruzich GP Jacobs JJ Paprosky WG Rosenberg AG Nam D

Aims

Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design.

Methods

All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims

Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading.

Methods

A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 711 - 719
1 Jul 1998
Sugano N Noble PC Kamaric E Salama JK Ochi T Tullos HS

We studied the morphometry of 35 femora from 31 female patients with developmental dysplasia of the hip (DDH) and another 15 from 15 age- and sex-matched control patients using CT and three-dimensional computer reconstruction models. According to the classification of Crowe et al 15 of the dysplastic hips were graded as class I (less than 50% subluxation), ten as class II/III (50% to 100% subluxation) and ten as class IV (more than 100% subluxation). The femora with DDH had 10 to 14° more anteversion than the control group independent of the degree of subluxation of the hip. In even the most mildly dysplastic joints, the femur had a smaller and more anteverted canal than the normal control. With increased subluxation, additional abnormalities were observed in the size and position of the femoral head. Femora from dislocated joints had a short, anteverted neck associated with a smaller, narrower, and straighter canal than femora of classes I and II/III or the normal control group. We suggest that when total hip replacement is performed in the patient with DDH, the femoral prosthesis should be chosen on the basis of the severity of the subluxation and the degree of anteversion of each individual femur


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1271 - 1273
1 Oct 2020
Scott CEH Simpson AHRW Pankaj P


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1348 - 1355
1 Nov 2019
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T

Aims

A retrospective study was conducted to measure short-term in vivo linear and volumetric wear of polyethylene (PE) inserts in 101 total knee arthroplasty (TKA) patients using model-based radiostereometric analysis (MBRSA).

Patients and Methods

Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.


The Bone & Joint Journal
Vol. 101-B, Issue 6 | Pages 627 - 634
1 Jun 2019
King JJ Dalton SS Gulotta LV Wright TW Schoch BS

Aims

Acromial fractures following reverse shoulder arthroplasty (RSA) have a wide range of incidences in reported case series. This study evaluates their incidence following RSA by systematically reviewing the current literature.

Materials and Methods

A systematic review using the search terms “reverse shoulder”, “reverse total shoulder”, or “inverted shoulder” was performed using PubMed, Web of Science, and Cochrane databases between 1 January 2010 and 31 March 2018. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. Studies were included if they reported on RSA outcomes and the incidence rate of acromial and/or scapular spine fractures. The rate of these fractures was evaluated for primary RSA, revision RSA, RSA indications, and RSA implant design.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims

The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model.

Materials and Methods

A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 491 - 496
1 Apr 2019
Li NY Kalagara S Hersey A Eltorai AEM Daniels AH Cruz Jr AI

Aims

The aim of this study was to utilize a national paediatric inpatient database to determine whether obesity influences the operative management and inpatient outcomes of paediatric limb fractures.

Patients and Methods

The Kids’ Inpatient Database (KID) was used to evaluate children between birth and 17 years of age, from 1997 and 2012, who had undergone open and closed treatment of humeral, radial and ulna, femoral, tibial, and ankle fractures. Demographics, hospital charges, lengths of stay (LOS), and complications were analyzed.


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1140 - 1146
1 Sep 2017
Shoji T Yamasaki T Izumi S Murakami H Mifuji K Sawa M Yasunaga Y Adachi N Ochi M

Aims

Our aim was to evaluate the radiographic characteristics of patients undergoing total hip arthroplasty (THA) for the potential of posterior bony impingement using CT simulations.

Patients and Methods

Virtual CT data from 112 patients who underwent THA were analysed. There were 40 men and 72 women. Their mean age was 59.1 years (41 to 76). Associations between radiographic characteristics and posterior bony impingement and the range of external rotation of the hip were evaluated. In addition, we investigated the effects of pelvic tilt and the neck/shaft angle and femoral offset on posterior bony impingement.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 880 - 888
1 Jul 2019
Wei R Guo W Yang R Tang X Yang Y Ji T Liang H

Aims

The aim of this study was to describe the use of 3D-printed sacral endoprostheses to reconstruct the pelvic ring and re-establish spinopelvic stability after total en bloc sacrectomy (TES) and to review its outcome.

Patients and Methods

We retrospectively reviewed 32 patients who underwent TES in our hospital between January 2015 and December 2017. We divided the patients into three groups on the basis of the method of reconstruction: an endoprosthesis group (n = 10); a combined reconstruction group (n = 14), who underwent non-endoprosthetic combined reconstruction, including anterior spinal column fixation; and a spinopelvic fixation (SPF) group (n = 8), who underwent only SPF. Spinopelvic stability, implant survival (IS), intraoperative haemorrhage rate, and perioperative complication rate in the endoprosthesis group were documented and compared with those of other two groups.


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1061 - 1066
1 Aug 2017
Refaie R Rushton P McGovern P Thompson D Serrano-Pedraza I Rankin KS Reed M

Aims

The interaction between surgical lighting and laminar airflow is poorly understood. We undertook an experiment to identify any effect contemporary surgical lights have on laminar flow and recommend practical strategies to limit any negative effects.

Materials and Methods

Neutrally buoyant bubbles were introduced into the surgical field of a simulated setup for a routine total knee arthroplasty in a laminar flow theatre. Patterns of airflow were observed and the number of bubbles remaining above the surgical field over time identified. Five different lighting configurations were assessed. Data were analysed using simple linear regression after logarithmic transformation.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1597 - 1603
1 Dec 2016
Meermans G Doorn JV Kats J

Aims

One goal of total hip arthroplasty is to restore normal hip anatomy. The aim of this study was to compare displacement of the centre of rotation (COR) using a standard reaming technique with a technique in which the acetabulum was reamed immediately peripherally and referenced off the rim.

Patients and Methods

In the first cohort the acetabulum was reamed to the floor followed by sequentially larger reamers. In the second cohort the acetabulum was only reamed peripherally, starting with a reamer the same size as the native femoral head. Anteroposterior pelvic radiographs were analysed for acetabular floor depth and vertical and horizontal position of the COR.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 36 - 43
1 Jan 2018
Hambright D Hellman M Barrack R

Aims

The aims of this study were to examine the rate at which the positioning of the acetabular component, leg length discrepancy and femoral offset are outside an acceptable range in total hip arthroplasties (THAs) which either do or do not involve the use of intra-operative digital imaging.

Patients and Methods

A retrospective case-control study was undertaken with 50 patients before and 50 patients after the integration of an intra-operative digital imaging system in THA. The demographics of the two groups were comparable for body mass index, age, laterality and the indication for surgery. The digital imaging group had more men than the group without. Surgical data and radiographic parameters, including the inclination and anteversion of the acetabular component, leg length discrepancy, and the difference in femoral offset compared with the contralateral hip were collected and compared, as well as the incidence of altering the position of a component based on the intra-operative image.


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 50 - 59
1 Jan 2017
Carli AV Negus JJ Haddad FS

Aims

Periprosthetic femoral fractures (PFF) following total hip arthroplasty (THA) are devastating complications that are associated with functional limitations and increased overall mortality. Although cementless implants have been associated with an increased risk of PFF, the precise contribution of implant geometry and design on the risk of both intra-operative and post-operative PFF remains poorly investigated. A systematic review was performed to aggregate all of the PFF literature with specific attention to the femoral implant used.

Patients and Methods

A systematic search strategy of several journal databases and recent proceedings from the American Academy of Orthopaedic Surgeons was performed. Clinical articles were included for analysis if sufficient implant description was provided. All articles were reviewed by two reviewers. A review of fundamental investigations of implant load-to-failure was performed, with the intent of identifying similar conclusions from the clinical and fundamental literature.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 536 - 542
1 Apr 2013
Puchwein P Jester B Freytag B Tanzer K Maizen C Gumpert R Pichler W

Ventral screw osteosynthesis is a common surgical method for treating fractures of the odontoid peg, but there is still no consensus about the number and diameter of the screws to be used. The purpose of this study was to develop a more accurate measurement technique for the morphometry of the odontoid peg (dens axis) and to provide a recommendation for ventral screw osteosynthesis.

Images of the cervical spine of 44 Caucasian patients, taken with a 64-line CT scanner, were evaluated using the measuring software MIMICS. All measurements were performed by two independent observers. Intraclass correlation coefficients were used to measure inter-rater variability.

The mean length of the odontoid peg was 39.76 mm (sd 2.68). The mean screw entry angle α was 59.45° (sd 3.45). The mean angle between the screw and the ventral border of C2 was 13.18° (sd 2.70), the maximum possible mean converging angle of two screws was 20.35° (sd 3.24). The measurements were obtained at the level of 66% of the total odontoid peg length and showed mean values of 8.36 mm (sd 0.84) for the inner diameter in the sagittal plane and 7.35 mm (sd 0.97) in the coronal plane. The mean outer diameter of the odontoid peg was 12.88 mm (sd 0.91) in the sagittal plane and 11.77 mm (sd 1.09) in the coronal plane. The results measured at the level of 90% of the total odontoid peg length were a mean of 6.12 mm (sd 1.14) for the sagittal inner diameter and 5.50 mm (sd 1.05) for the coronal inner diameter. The mean outer diameter of the odontoid peg was 11.10 mm (sd 1.0) in the sagittal plane and 10.00 mm (sd 1.07) in the coronal plane. In order to calculate the necessary screw length using 3.5 mm cannulated screws, 1.5 mm should be added to the measured odontoid peg length when anatomical reduction seems possible.

The cross-section of the odontoid peg is not circular but slightly elliptical, with a 10% greater diameter in the sagittal plane. In the majority of cases (70.5%) the odontoid peg offers enough room for two 3.5 mm cannulated cortical screws.

Cite this article: Bone Joint J 2013;95-B:536–42.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 84 - 88
1 Jan 2016
Vince K

The term mid-flexion instability has entered the orthopaedic literature as a concept, but has not been confirmed as a distinct clinical entity. The term is used freely, sometimes as a synonym for flexion instability. However, the terms need to be clearly separated. A cadaver study published in 1990 associated joint line elevation with decreased stability at many angles of flexion, but that model was not typical of clinical scenarios. The literature is considered and it is proposed that the more common entity of an uncorrected flexion contracture after a measured resection arthroplasty technique is more likely to produce clinical findings that suggest instability mid-flexion.

It is proposed that the clinical scenario encountered is generalised instability, with the appearance of stability in full extension from tight posterior structures.

This paper seeks to clarify whether mid-flexion instability exists as an entity distinct from other commonly recognised forms of instability.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):84–8.


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims

The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI).

Patients and Methods

A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 799 - 806
1 Jun 2006
Jones D Parkinson S Hosalkar HS

We reviewed retrospectively 45 patients (46 procedures) with bladder exstrophy treated by bilateral oblique pelvic osteotomy in conjunction with genitourinary repair.

The operative technique and post-operative management with or without external fixation are described. A total of 21 patients attended a special follow-up clinic and 24 were interviewed by telephone. The mean follow-up time was 57 months (24 to 108).

Of the 45 patients, 42 reported no pain or functional disability, although six had a waddling gait and two had marked external rotation of the hip. Complications included three cases of infection and loosening of the external fixator requiring early removal with no deleterious effect. Mid-line closure failed in one neonate managed in plaster. This patient underwent a successful revision procedure several months later using repeat osteotomies and external fixation.

The percentage pubic approximation was measured on anteroposterior radiographs pre-operatively, post-operatively and at final follow-up. The mean approximation was 37% (12% to 76%). It varied markedly with age and was better when external fixation was used. The wide range reflects the inability of the anterior segment to develop naturally in spite of close approximation at operation.

We conclude that bilateral oblique pelvic osteotomy with or without external fixation is useful in the management of difficult primary closure in bladder exstrophy, failed primary closure and secondary reconstruction.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 764 - 769
1 Jun 2013
Roche JJW Jones CDS Khan RJK Yates PJ

The piriformis muscle is an important landmark in the surgical anatomy of the hip, particularly the posterior approach for total hip replacement (THR). Standard orthopaedic teaching dictates that the tendon must be cut in to allow adequate access to the superior part of the acetabulum and the femoral medullary canal. However, in our experience a routine THR can be performed through a posterior approach without sacrificing this tendon.

We dissected the proximal femora of 15 cadavers in order to clarify the morphological anatomy of the piriformis tendon. We confirmed that the tendon attaches on the crest of the greater trochanter, in a position superior to the trochanteric fossa, away from the entry point for broaching the intramedullary canal during THR. The tendon attachment site encompassed the summit and medial aspect of the greater trochanter as well as a variable attachment to the fibrous capsule of the hip joint. In addition we dissected seven cadavers resecting all posterior attachments except the piriformis muscle and tendon in order to study their relations to the hip joint, as the joint was flexed. At flexion of 90° the piriformis muscle lay directly posterior to the hip joint.

The piriform fossa is a term used by orthopaedic surgeons to refer the trochanteric fossa and normally has no relation to the attachment site of the piriformis tendon. In hip flexion the piriformis lies directly behind the hip joint and might reasonably be considered to contribute to the stability of the joint.

We conclude that the anatomy of the piriformis muscle is often inaccurately described in the current surgical literature and terms are used and interchanged inappropriately.

Cite this article: Bone Joint J 2013;95-B:764–9.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1417 - 1424
1 Oct 2013
Jeys L Matharu GS Nandra RS Grimer RJ

We hypothesised that the use of computer navigation-assisted surgery for pelvic and sacral tumours would reduce the risk of an intralesional margin. We reviewed 31 patients (18 men and 13 women) with a mean age of 52.9 years (13.5 to 77.2) in whom computer navigation-assisted surgery had been carried out for a bone tumour of the pelvis or sacrum. There were 23 primary malignant bone tumours, four metastatic tumours and four locally advanced primary tumours of the rectum. The registration error when using computer navigation was <  1 mm in each case. There were no complications related to the navigation, which allowed the preservation of sacral nerve roots (n = 13), resection of otherwise inoperable disease (n = 4) and the avoidance of hindquarter amputation (n = 3). The intralesional resection rate for primary tumours of the pelvis and sacrum was 8.7% (n = 2): clear bone resection margins were achieved in all cases. At a mean follow-up of 13.1 months (3 to 34) three patients (13%) had developed a local recurrence. The mean time alive from diagnosis was 16.8 months (4 to 48).

Computer navigation-assisted surgery is safe and has reduced our intralesional resection rate for primary tumours of the pelvis and sacrum. We recommend this technique as being worthy of further consideration for this group of patients.

Cite this article: Bone Joint J 2013;95-B:1417–24.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 530 - 535
1 Apr 2013
Roche CP Marczuk Y Wright TW Flurin P Grey S Jones R Routman HD Gilot G Zuckerman JD

This study provides recommendations on the position of the implant in reverse shoulder replacement in order to minimise scapular notching and osteophyte formation. Radiographs from 151 patients who underwent primary reverse shoulder replacement with a single prosthesis were analysed at a mean follow-up of 28.3 months (24 to 44) for notching, osteophytes, the position of the glenoid baseplate, the overhang of the glenosphere, and the prosthesis scapular neck angle (PSNA).

A total of 20 patients (13.2%) had a notch (16 Grade 1 and four Grade 2) and 47 (31.1%) had an osteophyte. In patients without either notching or an osteophyte the baseplate was found to be positioned lower on the glenoid, with greater overhang of the glenosphere and a lower PSNA than those with notching and an osteophyte. Female patients had a higher rate of notching than males (13.3% vs 13.0%) but a lower rate of osteophyte formation (22.9% vs 50.0%), even though the baseplate was positioned significantly lower on the glenoid in females (p = 0.009) and each had a similar mean overhang of the glenosphere.

Based on these findings we make recommendations on the placement of the implant in both male and female patients to avoid notching and osteophyte formation.

Cite this article: Bone Joint J 2013;95-B:530–5.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 492 - 497
1 Apr 2015
Ike H Inaba Y Kobayashi N Yukizawa Y Hirata Y Tomioka M Saito T

In this study we used subject-specific finite element analysis to investigate the mechanical effects of rotational acetabular osteotomy (RAO) on the hip joint and analysed the correlation between various radiological measurements and mechanical stress in the hip joint.

We evaluated 13 hips in 12 patients (two men and ten women, mean age at surgery 32.0 years; 19 to 46) with developmental dysplasia of the hip (DDH) who were treated by RAO.

Subject-specific finite element models were constructed from CT data. The centre–edge (CE) angle, acetabular head index (AHI), acetabular angle and acetabular roof angle (ARA) were measured on anteroposterior pelvic radiographs taken before and after RAO. The relationship between equivalent stress in the hip joint and radiological measurements was analysed.

The equivalent stress in the acetabulum decreased from 4.1 MPa (2.7 to 6.5) pre-operatively to 2.8 MPa (1.8 to 3.6) post-operatively (p < 0.01). There was a moderate correlation between equivalent stress in the acetabulum and the radiological measurements: CE angle (R = –0.645, p < 0.01); AHI (R = –0.603, p < 0.01); acetabular angle (R = 0.484, p = 0.02); and ARA (R = 0.572, p < 0.01).

The equivalent stress in the acetabulum of patients with DDH decreased after RAO. Correction of the CE angle, AHI and ARA was considered to be important in reducing the mechanical stress in the hip joint.

Cite this article: Bone Joint J 2015;97-B:492–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1217 - 1222
1 Sep 2011
Bonner TJ Eardley WGP Patterson P Gregg PJ

Correct positioning and alignment of components during primary total knee replacement (TKR) is widely accepted to be an important predictor of patient satisfaction and implant durability. This retrospective study reports the effect of the post-operative mechanical axis of the lower limb in the coronal plane on implant survival following primary TKR.

A total of 501 TKRs in 396 patients were divided into an aligned group with a neutral mechanical axis (± 3°) and a malaligned group where the mechanical axis deviated from neutral by > 3°. At 15 years’ follow-up, 33 of 458 (7.2%) TKRs were revised for aseptic loosening. Kaplan-Meier survival analysis showed a weak tendency towards improved survival with restoration of a neutral mechanical axis, but this did not reach statistical significance (p = 0.47).

We found that the relationship between survival of a primary TKR and mechanical axis alignment is weaker than that described in a number of previous reports.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 237 - 241
1 Feb 2014
Miyake J Shimada K Oka K Tanaka H Sugamoto K Yoshikawa H Murase T

We retrospectively assessed the value of identifying impinging osteophytes using dynamic computer simulation of CT scans of the elbow in assisting their arthroscopic removal in patients with osteoarthritis of the elbow. A total of 20 patients were treated (19 men and one woman, mean age 38 years (19 to 55)) and followed for a mean of 25 months (24 to 29). We located the impinging osteophytes dynamically using computerised three-dimensional models of the elbow based on CT data in three positions of flexion of the elbow. These were then removed arthroscopically and a capsular release was performed.

The mean loss of extension improved from 23° (10° to 45°) pre-operatively to 9° (0° to 25°) post-operatively, and the mean flexion improved from 121° (80° to 140°) pre-operatively to 130° (110° to 145°) post-operatively. The mean Mayo Elbow Performance Score improved from 62 (30 to 85) to 95 (70 to 100) post-operatively. All patients had pain in the elbow pre-operatively which disappeared or decreased post-operatively. According to their Mayo scores, 14 patients had an excellent clinical outcome and six a good outcome; 15 were very satisfied and five were satisfied with their post-operative outcome.

We recommend this technique in the surgical management of patients with osteoarthritis of the elbow.

Cite this article: Bone Joint J 2014;96-B:237–41.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1631 - 1633
1 Dec 2008
Atinga M Hamer AJ

The Morquio syndrome is a rare disorder which presents with a number of musculoskeletal problems. The literature describing total knee replacement in these patients is sparse. We describe the management of a patient with bilateral instability and pain in the knees using bilateral constrained knee replacements, and followed up for five years with pre- and postoperative knee scores. We highlight the difficulties encountered and discuss the end results.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems.

Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur.

The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 833 - 838
1 Jul 2008
Uçkay I Pittet D Bernard L Lew D Perrier A Peter R

More than a million hip replacements are carried out each year worldwide, and the number of other artificial joints inserted is also rising, so that infections associated with arthroplasties have become more common. However, there is a paucity of literature on infections due to haematogenous seeding following dental procedures. We reviewed the published literature to establish the current knowledge on this problem and to determine the evidence for routine antibiotic prophylaxis prior to a dental procedure.

We found that antimicrobial prophylaxis before dental interventions in patients with artificial joints lacks evidence-based information and thus cannot be universally recommended.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces.

The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1037 - 1043
1 Aug 2009
Krieg AH Speth BM Ochsner PE

Polyethylene wear of acetabular components is a key factor in the development of periprosthetic osteolysis and wear at the articular surface has been well documented and quantified, but fewer data are available about changes which occur at the backside of the liner.

At revision surgery for loosening of the femoral component we retrieved 35 conventional modular acetabular liners of the same design. Linear and volumetric articular wear, backside volumetric change and the volume of the screw-head indentations were quantified. These volumes, clinical data and the results from radiological Ein Bild Röntgen Analyse migration analysis were used to identify potential factors influencing the volumetric articular wear and backside volumetric change.

The rate of backside volumetric change was found to be 2.8% of the rate of volumetric articular wear and decreased with increasing liner size. Migrated acetabular components showed significantly higher rates of backside volumetric change plus screw-head indentations than those without migration.

The backside volumetric change was at least ten times larger than finite-element simulation had suggested. In a stable acetabular component with well-anchored screws, the amount of backside wear should not cause clinical problems. Impingement of the screw-heads could produce more wear particles than those generated at the liner-shell interface. Because the rate of backside volumetric change is only 2.8% of the rate of volumetric articular wear and since creep is likely to contribute a significant portion to this, the debris generated by wear at the backside of the liner may not be sufficient to create a strong osteolytic response.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines.

The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion.

The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1548 - 1557
1 Dec 2008
Brinkman J Lobenhoffer P Agneskirchner JD Staubli AE Wymenga AB van Heerwaarden RJ

New developments in osteotomy techniques and methods of fixation have caused a revival of interest of osteotomies around the knee. The current consensus on the indications, patient selection and the factors influencing the outcome after high tibial osteotomy is presented. This paper highlights recent research aimed at joint pressure redistribution, fixation stability and bone healing that has led to improved surgical techniques and a decrease of post-operative time to full weight-bearing.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 258 - 263
1 Feb 2008
Parratte S Kilian P Pauly V Champsaur P Argenson JA

We have evaluated in vitro the accuracy of percutaneous and ultrasound registration as measured in terms of errors in rotation and version relative to the bony anterior pelvic plane in computer-assisted total hip replacement, and analysed the intra- and inter-observer reliability of manual or ultrasound registration.

Four clinicians were asked to perform registration of the landmarks of the anterior pelvic plane on two cadavers. Registration was performed under four different conditions of acquisition. Errors in rotation were not significant. Version errors were significant with percutaneous methods (16.2°; p < 0.001 and 19.25° with surgical draping; p < 0.001), but not with the ultrasound acquisition (6.2°, p = 0.13). Intra-observer repeatability was achieved for all the methods. Inter-observer analysis showed acceptable agreement in the sagittal but not in the frontal plane.

Ultrasound acquisition of the anterior pelvic plane was more reliable in vitro than the cutaneous digitisation currently used.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 921 - 927
1 Jul 2005
Glyn-Jones S Gill HS Beard DJ McLardy-Smith P Murray DW

Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability.

Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°, sd 0.42°) and internally rotate (mean 1.28°, sd 0.99°). The CPS-Plus showed no significant valgus rotation (mean 0.2°, sd 0.42°) or internal rotation (mean −0.03°, sd 0.75°). A wider, more rectangular cross-section improves rotational stability and may have a better long-term outcome.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1115 - 1121
1 Aug 2007
Messick KJ Miller MA Damron LA Race A Clarke MT Mann KA

The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces.

The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired t-test, p = 0.187). The linear pore fractions at the interfaces were also similar for the two techniques. The pore number-density was much higher for the hand-mixed cement (paired t-test, p = 0.0013). The strength of the cement-stem interface was greater with the hand-mixed cement (paired t-test, p = 0.0005), while the strength of the cement-bone interface was not affected by the conditions of mixing (paired t-test, p = 0.275). The reduction in porosity with vacuum mixing did not affect the porosity of the mantle, but the distribution of the porosity can be affected by the technique of mixing used.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1143 - 1151
1 Sep 2008
Langton DJ Jameson SS Joyce TJ Webb J Nargol AVF

Increased concentrations of metal ions after metal-on-metal resurfacing arthroplasty of the hip remain a concern. Although there has been no proven link to long-term health problems or early prosthetic failure, variables associated with high metal ion concentrations should be identified and, if possible, corrected. Our study provides data on metal ion levels from a series of 76 consecutive patients (76 hips) after resurfacing arthroplasty with the Articular Surface Replacement. Chromium and cobalt ion concentrations in the whole blood of patients with smaller (≤ 51 mm) femoral components were significantly higher than in those with the larger (≥ 53 mm) components (p < 0.01). Ion concentrations in the former group were significantly related to the inclination (p = 0.01) and anteversion (p = 0.01) of the acetabular component. The same relationships were not significant in the patients with larger femoral components (p = 0.61 and p = 0.49, respectively). Accurate positioning of the acetabular component intra-operatively is essential in order to reduce the concentration of metal ions in the blood after hip resurfacing arthroplasty with the Articular Surface Replacement implant.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.