Advertisement for orthosearch.org.uk
Results 1 - 29 of 29
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 107 - 115
1 Jun 2020
Tetreault MW Perry KI Pagnano MW Hanssen AD Abdel MP

Aims. Metaphyseal fixation during revision total knee arthroplasty (TKA) is important, but potentially difficult when using historical designs of cone. Material and manufacturing innovations have improved the size and shape of the cones which are available, and simplified the required bone preparation. In a large series, we assessed the implant survivorship, radiological results, and clinical outcomes of new porous 3D-printed titanium metaphyseal cones featuring a reamer-based system. Methods. We reviewed 142 revision TKAs in 139 patients using 202 cones (134 tibial, 68 femoral) which were undertaken between 2015 and 2016. A total of 60 involved tibial and femoral cones. Most cones (149 of 202; 74%) were used for Type 2B or 3 bone loss. The mean age of the patients was 66 years (44 to 88), and 76 (55 %) were female. The mean body mass index (BMI) was 34 kg/m. 2. (18 to 60). The patients had a mean of 2.4 (1 to 8) previous operations on the knee, and 68 (48%) had a history of prosthetic infection. The mean follow-up was 2.4 years (2 to 3.6). Results. Survivorship free of cone revision for aseptic loosening was 100% and survivorship free of any cone revision was 98%. Survivorships free of any revision and any reoperation were 90% and 83%, respectively. Five cones were revised: three for infection, one for periprosthetic fracture, and one for aseptic tibial loosening. Radiologically, three unrevised femoral cones appeared loose in the presence of hinged implants, while the remaining cones appeared stable. All cases of cone loosening occurred in patients with Type 2B or 3 defects. The mean Knee Society score (KSS) improved significantly from 50 (0 to 94) preoperatively to 87 (72 to 94) (p < 0.001). Three intraoperative fractures with cone impaction (two femoral, one tibial) healed uneventfully. Conclusion. Novel 3D-printed titanium cones, with a reamer-based system, yielded excellent early survivorship and few complications in patients with severe bone loss undergoing difficult revision TKA. The diversity of cone options, relative ease of preparation, and outcomes rivalling those of previous designs of cone support their continued use. Cite this article: Bone Joint J 2020;102-B(6 Supple A):107–115


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 56 - 63
1 Jan 2023
de Klerk HH Oosterhoff JHF Schoolmeesters B Nieboer P Eygendaal D Jaarsma RL IJpma FFA van den Bekerom MPJ Doornberg JN

Aims. This study aimed to answer the following questions: do 3D-printed models lead to a more accurate recognition of the pattern of complex fractures of the elbow?; do 3D-printed models lead to a more reliable recognition of the pattern of these injuries?; and do junior surgeons benefit more from 3D-printed models than senior surgeons?. Methods. A total of 15 orthopaedic trauma surgeons (seven juniors, eight seniors) evaluated 20 complex elbow fractures for their overall pattern (i.e. varus posterior medial rotational injury, terrible triad injury, radial head fracture with posterolateral dislocation, anterior (trans-)olecranon fracture-dislocation, posterior (trans-)olecranon fracture-dislocation) and their specific characteristics. First, fractures were assessed based on radiographs and 2D and 3D CT scans; and in a subsequent round, one month later, with additional 3D-printed models. Diagnostic accuracy (acc) and inter-surgeon reliability (κ) were determined for each assessment. Results. Accuracy significantly improved with 3D-printed models for the whole group on pattern recognition (acc. 2D/3D. = 0.62 vs acc. 3Dprint. = 0.69; Δacc = 0.07 (95% confidence interval (CI) 0.00 to 0.14); p = 0.025). A significant improvement was also seen in reliability for pattern recognition with the additional 3D-printed models (κ. 2D/3D. = 0.41 (moderate) vs κ. 3Dprint. = 0.59 (moderate); Δκ = 0.18 (95% CI 0.14 to 0.22); p ≤ 0.001). Accuracy was comparable between junior and senior surgeons with the 3D-printed model (acc. junior. = 0.70 vs acc. senior. = 0.68; Δacc = -0.02 (95% CI -0.17 to 0.13); p = 0.904). Reliability was also comparable between junior and senior surgeons without the 3D-printed model (κ. junior. = 0.39 (fair) vs κ. senior. = 0.43 (moderate); Δκ = 0.03 (95% CI -0.03 to 0.10); p = 0.318). However, junior surgeons showed greater improvement regarding reliability than seniors with 3D-printed models (κ. junior. = 0.65 (substantial) vs κ. senior. = 0.54 (moderate); Δκ = 0.11 (95% CI 0.04 to 0.18); p = 0.002). Conclusion. The use of 3D-printed models significantly improved the accuracy and reliability of recognizing the pattern of complex fractures of the elbow. However, the current long printing time and non-reusable materials could limit the usefulness of 3D-printed models in clinical practice. They could be suitable as a reusable tool for teaching residents. Cite this article: Bone Joint J 2023;105-B(1):56–63


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 747 - 757
1 Jun 2022
Liang H Yang Y Guo W Yan L Tang X Li D Qu H Zang J Du Z

Aims. The aim of this study was to investigate the feasibility of application of a 3D-printed megaprosthesis with hemiarthroplasty design for defects of the distal humerus or proximal ulna following tumour resection. Methods. From June 2018 to January 2020, 13 patients with aggressive or malignant tumours involving the distal humerus (n = 8) or proximal ulna (n = 5) were treated by en bloc resection and reconstruction with a 3D-printed megaprosthesis with hemiarthroplasty, designed in our centre. In this paper, we summarize the baseline and operative data, oncological outcome, complication profiles, and functional status of these patients. Results. Preparation of the prosthesis was a mean of 8.0 days (SD 1.5), during which time no patients experienced tumour progression. The mean operating time and intraoperative blood loss were 158.1 minutes (SD 67.6) and 176.9 ml (SD 187.8), respectively. All of the prostheses were implanted successfully. During a mean follow-up of 25.7 months (SD 7.8), no patients died, but four had complications (two superficial wound problems, one temporary palsy of radial nerve, and one dislocation). No aseptic loosening, structural failure, infection, heterotopic ossification, or degenerative arthritis was seen in this study. The mean flexion of the elbow was 119.6° (SD 15.9°) and the mean extension lag was 11.9° (SD 13.8°). The mean Musculoskeletal Tumor Society 93 score and Mayo Elbow Performance Score were 28.4 (SD 0.9) and 97.7 (SD 4.4), respectively. Conclusion. The custom-made, 3D-printed megaprosthesis with hemiarthroplasty is a feasible option for functional reconstruction after resection of a tumour in the distal humerus or proximal ulna. Cite this article: Bone Joint J 2022;104-B(6):747–757


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims. This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Materials and Methods. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced. Results. Before and after steam sterilization, dimensional analysis showed that acrylonitrile butadiene styrene could not withstand the temperatures without dimensional changes. Oscillating saw tests with slotted cutting blocks produced debris, fractures, or further dimensional changes in the shape of Nylon-12 and polymethylmethacrylate (MED610), but polyetherimide ULTEM 1010 was least affected. Conclusion. The study showed that 3D-printed instrumentation was technically feasible and had some advantages. However, other factors, such as whether all procedural steps can be accomplished with a set of 3D-printed instruments, the logistics of delivery, and the economic aspects, require further study. Cite this article: Bone Joint J 2019;101-B(7 Supple C):115–120


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 32 - 37
1 Jun 2021
Restrepo S Smith EB Hozack WJ

Aims. Cementless total knee arthroplasty (TKA) offers the potential for strong biological fixation compared with cemented TKA where fixation is achieved by the mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs, which have used additive manufacturing (3D printing). The aim of this study was to present mid-term clinical outcomes and implant survivorship of the cementless Stryker Triathlon Tritanium TKA. Methods. This was a single institution registry review of prospectively gathered data from 341 cementless Triathlon Tritanium TKAs at four to 6.8 years follow-up. Outcomes were determined by comparing pre- and postoperative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores, and pre- and postoperative 12-item Veterans RAND/Short Form Health Survey (VR/SF-12) scores. Aseptic loosening and revision for any reason were the endpoints which were used to determine survivorship at five years. Results. At mid-term follow-up, the mean KOOS JR score improved significantly from 33.14 (0 t0 85, standard deviation (SD) 21.88) preoperatively to 84.12 (15.94 to 100, SD 20.51) postoperatively (p < 0.001), the mean VR/SF-12 scores improved significantly from physical health (PH), 31.21 (SD 5.32; 23.99 to 56.77) preoperatively to 42.62 (SD 10.72; 19.38 to 56.82) postoperatively (p < 0.001) and the mental health (MH), 38.15 (SD 8.17; 19.06 to 60.75) preoperatively to 55.09 (SD 9.64; 19.06 to 66.98) postoperatively (p < 0.001). A total of 11 revisions were undertaken, with an overall revision rate of 2.94%, including five for periprosthetic joint infection (1.34%), three for loosening (0.80%), two for instability (0.53%), and one for pain (0.27%). The overall survivorship was 97.06% and survivorship for aseptic loosening as the endpoint was 98.40%, with a 99.5% survivorship of the 3D-printed tibial component. Conclusion. This 3D-printed cementless total knee system shows excellent survivorship at mid-term follow-up. This design and the ability to obtain cementless fixation offers promise for excellent long-term durability. Cite this article: Bone Joint J 2021;103-B(6 Supple A):32–37


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 150 - 157
1 Jun 2021
Anderson LA Christie M Blackburn BE Mahan C Earl C Pelt CE Peters CL Gililland J

Aims. Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones. Methods. A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m. 2. (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type. Results. No patients had a revision of a cone due to aseptic loosening; however, two had revision surgery due to infection. In all, 26 (27%) patients had HKA malalignment; nine (9.5%) patients had sagittal plane malalignment, five (5.6%) of the tibia, and four (10.8%) of the femur. After adjusting for age, sex, and BMI, there was a significantly increased risk for malalignment when a cone was used and both the femur and tibia had cementless compared to cemented stems (odds ratio 3.19, 95% confidence interval 1.01 to 10.05). Conclusion. Porous 3D-printed cones provide excellent metaphyseal fixation. However, these central cones make the use of offset couplers difficult and may generate malalignment with cementless stems. We found 3.19-times higher odds of malalignment in our TKAs performed with metaphyseal cones and both femoral and tibial cementless stems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):150–157


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 40 - 47
1 Jul 2019
Sporer S MacLean L Burger A Moric M

Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months. Conclusion. Biological fixation appears to occur reliably on the highly porous implant surface of the tibial baseplate and metal-backed patellar component. Rapid migration after 12 months was measured for one patellar component. Further investigation is required to assess the long-term stability of the 3D-printed components and to determine if the high-migrating components achieve fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):40–47


Aims. This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. Methods. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy. Results. The maximum resection amount error was 2 mm. Out of 29 resection amount errors, 15 (51.7%) were grade 1 errors and 14 (48.3%) were grade 2 errors. Complex resections were associated with higher-grade resection amount errors (p < 0.001). The actual resection margins correlated significantly with the planned margins; however, there were some discrepancies. The maximum guide-fitting error was 3 mm. There were 22 (75.9%), five (17.2%), and two (6.9%) grade 1, 2, and 3 guide-fitting errors, respectively. There was no significant association between complex resection and fitting error grades. The guide distortion after one month in all patients was rated as grade 1. Conclusion. In terms of the accurate resection amount according to the preoperative planning, 3DP-PSRGs can be a viable option for bone tumour resection. However, 3DP-PSRG use may be associated with resection margin length discrepancies relative to the planned margins. Such discrepancies should be considered when determining surgical margins. Therefore, a thorough evaluation of the preoperative imaging and surgical planning is still required, even if 3DP-PSRGs are to be used. Cite this article: Bone Joint J 2023;105-B(2):190–197


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 267 - 275
1 Feb 2017
Liang H Ji T Zhang Y Wang Y Guo W

Aims. The aims of this retrospective study were to report the feasibility of using 3D-printing technology for patients with a pelvic tumour who underwent reconstruction. Patients and Methods. A total of 35 patients underwent resection of a pelvic tumour and reconstruction using 3D-printed endoprostheses between September 2013 and December 2015. According to Enneking’s classification of bone defects, there were three Type I lesions, 12 Type II+III lesions, five Type I+II lesions, two Type I+II+III lesions, ten type I+II+IV lesions and three type I+II+III+IV lesions. A total of three patients underwent reconstruction using an iliac prosthesis, 12 using a standard hemipelvic prosthesis and 20 using a screw-rod connected hemipelvic prosthesis. Results. All patients had an en bloc resection. Margins were wide in 15 patients, marginal in 14 and intralesional in six. After a mean follow-up of 20.5 months (6 to 30), 25 patients survived without evidence of disease, five were alive with disease and five had died from metastatic disease. . Complications included seven patients with delayed wound healing and two with a dislocation of the hip. None had a deep infection. For the 30 surviving patients, the mean Musculoskeletal Society 93 score was 22.7 (20 to 25) for patients with an iliac prosthesis, 19.8 (15 to 26) for those with a standard prosthesis, and 17.7 (9 to 25) for those with a screw-rod connected prosthesis. Conclusion. The application of 3D-printing technology can facilitate the precise matching and osseointegration between implants and the host bone. We found that the use of 3D-printed pelvic prostheses for reconstruction of the bony defect after resection of a pelvic tumour was safe, without additional complications, and gave good short-term functional results. Cite this article: Bone Joint J 2017;99-B:267–75


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1016 - 1024
1 Aug 2020
Hasan S van Hamersveld KT Marang-van de Mheen PJ Kaptein BL Nelissen RGHH Toksvig-Larsen S

Aims. Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening. Methods. A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements. Results. The mean maximum total point motion (MTPM) at three, 12, and 24 months was 0.33 mm (95% confidence interval (CI) 0.25 to 0.42), 0.42 mm (95% CI 0.33 to 0.51), and 0.47 mm (95% CI 0.38 to 0.57) respectively in the cemented group, versus 0.52 mm (95% CI 0.43 to 0.63), 0.62 mm (95% CI 0.52 to 0.73), and 0.64 mm (95% CI 0.53 to 0.75) in the cementless group (p = 0.003). However, using three months as baseline, no difference in mean migration between groups was found (p = 0.497). Three implants in the cemented group showed a > 0.2 mm increase in MTPM between one and two years of follow-up. In the cementless group, one implant was revised due to pain and progressive migration, and one patient had a liner-exchange due to a deep infection. Conclusion. The cementless TKA migrated more than the cemented TKA in the first two-year period. This difference was mainly due to a higher initial migration of the cementless TKA in the first three postoperative months after which stabilization was observed in all but one malaligned and early revised TKA. Whether the biological fixation of the cementless implants will result in an increased long-term survivorship requires a longer follow-up. Cite this article: Bone Joint J 2020;102-B(8):1016–1024


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 880 - 888
1 Jul 2019
Wei R Guo W Yang R Tang X Yang Y Ji T Liang H

Aims. The aim of this study was to describe the use of 3D-printed sacral endoprostheses to reconstruct the pelvic ring and re-establish spinopelvic stability after total en bloc sacrectomy (TES) and to review its outcome. Patients and Methods. We retrospectively reviewed 32 patients who underwent TES in our hospital between January 2015 and December 2017. We divided the patients into three groups on the basis of the method of reconstruction: an endoprosthesis group (n = 10); a combined reconstruction group (n = 14), who underwent non-endoprosthetic combined reconstruction, including anterior spinal column fixation; and a spinopelvic fixation (SPF) group (n = 8), who underwent only SPF. Spinopelvic stability, implant survival (IS), intraoperative haemorrhage rate, and perioperative complication rate in the endoprosthesis group were documented and compared with those of other two groups. Results. The mean overall follow-up was 22.1 months (9 to 44). In the endoprosthesis group, the mean intraoperative hemorrhage was 3530 ml (1600 to 8100). Perioperative complications occurred in two patients; both had problems with wound healing. After a mean follow-up of 17.7 months (12 to 38), 9/10 patients could walk without aids and 8/10 patients were not using analgesics. Imaging evidence of implant failure was found in three patients, all of whom had breakage of screws and/or rods. Only one of these, who had a local recurrence, underwent re-operation, at which solid bone-endoprosthetic osseointegration was found. The mean IS using re-operation as the endpoint was 32.5 months (95% confidence interval 23.2 to 41.8). Compared with the other two groups, the endoprosthesis group had significantly better spinopelvic stability and IS with no greater intraoperative haemorrhage or perioperative complications. Conclusion. The use of 3D-printed endoprostheses for reconstruction after TES provides reliable spinopelvic stability and IS by facilitating osseointegration at the bone-implant interfaces, with acceptable levels of haemorrhage and complications. Cite this article: Bone Joint J 2019;101-B:880–888


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1080 - 1085
1 Aug 2016
Gauci MO Boileau P Baba M Chaoui J Walch G

Aims. Patient-specific glenoid guides (PSGs) claim an improvement in accuracy and reproducibility of the positioning of components in total shoulder arthroplasty (TSA). The results have not yet been confirmed in a prospective clinical trial. Our aim was to assess whether the use of PSGs in patients with osteoarthritis of the shoulder would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age of 71 years (53 to 81) awaiting TSA were enrolled in the study. Pre- and post-operative version and inclination of the glenoid were measured on CT scans, using 3D planning automatic software. During surgery, a congruent 3D-printed PSG was applied onto the glenoid surface, thus determining the entry point and orientation of the central guide wire used for reaming the glenoid and the introduction of the component. Manual segmentation was performed on post-operative CT scans to compare the planned and the actual position of the entry point (mm) and orientation of the component (°). Results. The mean error in the accuracy of the entry point was -0.1 mm (standard deviation (. sd. ) 1.4) in the horizontal plane, and 0.8 mm (. sd. 1.3) in the vertical plane. The mean error in the orientation of the glenoid component was 3.4° (. sd. 5.1°) for version and 1.8° (. sd. 5.3°) for inclination. Conclusion. Pre-operative planning with automatic software and the use of PSGs provides accurate and reproducible positioning and orientation of the glenoid component in anatomical TSA. Cite this article: Bone Joint J 2016;98-B:1080–5


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims

The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss.

Methods

We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 136 - 143
1 Feb 2024
van der Lelij TJN Marang-van de Mheen PJ Kaptein BL Koster LA Ljung P Nelissen RGHH Toksvig-Larsen S

Aims

The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface.

Methods

Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 465 - 465
15 Mar 2023


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 93 - 98
1 Jan 2024
Broida SE Tsoi KM Rose PS Ferguson PC Griffin AM Wunder JS Houdek MT

Aims

The sacroiliac joint (SIJ) is the only mechanical connection between the axial skeleton and lower limbs. Following iliosacral resection, there is debate on whether reconstruction of the joint is necessary. There is a paucity of data comparing the outcomes of patients undergoing reconstruction and those who are not formally reconstructed.

Methods

A total of 60 patients (25 females, 35 males; mean age 39 years (SD 18)) undergoing iliosacral resection were reviewed. Most resections were performed for primary malignant tumours (n = 54; 90%). The mean follow-up for surviving patients was nine years (2 to 19).


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims

The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time.

Methods

Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 290 - 296
1 Feb 2022
Gosheger G Ahrens H Dreher P Schneider KN Deventer N Budny T Heitkötter B Schulze M Theil C

Aims

Iliosacral sarcoma resections have been shown to have high rates of local recurrence (LR) and poor overall survival. There is also no universal classification for the resection of pelvic sarcomas invading the sacrum. This study proposes a novel classification system and analyzes the survival and risk of recurrence, when using this system.

Methods

This is a retrospective analysis of 151 patients (with median follow-up in survivors of 44 months (interquartile range 12 to 77)) who underwent hemipelvectomy with iliosacral resection at a single centre between 2007 and 2019. The proposed classification differentiates the extent of iliosacral resection and defines types S1 to S6 (S1 resection medial and parallel to the sacroiliac joint, S2 resection through the ipsilateral sacral lateral mass to the neuroforamina, S3 resection through the ipsilateral neuroforamina, S4 resection through ipsilateral the spinal canal, and S5 and S6 contralateral sacral resections). Descriptive statistics and the chi-squared test were used for categorical variables, and the Kaplan-Meier survival analysis were performed.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims

The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups.

Methods

A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm3 cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 423 - 429
1 Mar 2021
Diez-Escudero A Hailer NP

Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth.

Cite this article: Bone Joint J 2021;103-B(3):423–429.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1380 - 1385
2 Aug 2021
Kim Y Ryu J Kim JK Al-Dhafer BAA Shin YH

Aims

The aim of this study was to assess arthritis of the basal joint of the thumb quantitatively using bone single-photon emission CT/CT (SPECT/CT) and evaluate its relationship with patients’ pain and function.

Methods

We retrospectively reviewed 30 patients (53 hands) with symptomatic basal joint arthritis of the thumb between April 2019 and March 2020. Visual analogue scale (VAS) scores for pain, grip strength, and pinch power of both hands and Patient-Rated Wrist/Hand Evaluation (PRWHE) scores were recorded for all patients. Basal joint arthritis was classified according to the modified Eaton-Glickel stage using routine radiographs and the CT scans of SPECT/CT, respectively. The maximum standardized uptake value (SUVmax) from SPECT/CT was measured in the four peritrapezial joints and the highest uptake was used for analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 840 - 845
1 May 2021
Rossi SMP Perticarini L Clocchiatti S Ghiara M Benazzo F

Aims

In the last decade, interest in partial knee arthroplasties and bicruciate retaining total knee arthroplasties has increased. In addition, patient-related outcomes and functional results such as range of movement and ambulation may be more promising with less invasive procedures such as bicompartmental arthroplasty (BCA). The purpose of this study is to evaluate clinical and radiological outcomes after a third-generation patellofemoral arthroplasty (PFA) combined with a medial or lateral unicompartmental knee arthroplasty (UKA) at mid- to long-term follow-up.

Methods

A total of 57 procedures were performed. In 45 cases, a PFA was associated with a medial UKA and, in 12, with a lateral UKA. Patients were followed with validated patient-reported outcome measures (Oxford Knee Score (OKS), EuroQol five-dimension questionnaire (EQ-5D), EuroQoL Visual Analogue Scale (EQ-VAS)), the Knee Society Score (KSS), the Forgotten Joint Score (FJS), and radiological analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims

Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment.

Methods

A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims

Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment.

Methods

The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 455 - 460
1 Apr 2018
Mumith A Thomas M Shah Z Coathup M Blunn G

Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research.

This review describes the current position in the use of additive manufacturing in orthopaedic surgery.

Cite this article: Bone Joint J 2018;100-B:455-60.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims

We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement.

Methods

Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 798 - 805
1 Jun 2018
Zhang Y Guo W Tang X Yang R Ji T Yang Y Wang Y Wei R

Aims

The sacrum is frequently invaded by a pelvic tumour. The aim of this study was to review our experience of treating this group of patients and to identify the feasibility of a new surgical classification in the management of these tumours.

Patients and Methods

We reviewed 141 patients who, between 2005 and 2014, had undergone surgical excision of a pelvic tumour with invasion of the sacrum.

In a new classification, pelvisacral (Ps) I, II, and III resections refer to a sagittal osteotomy through the ipsilateral wing of the sacrum, through the sacral midline, or lateral to the contralateral sacral foramina, respectively. A Ps a resection describes a pelvic osteotomy through the ilium and a Ps b resection describes a concurrent resection of the acetabulum with osteotomies performed through the pubis and ischium or the pubic symphysis. Within each type, surgical approaches were standardized to guide resection of the tumour.