DXA areal-bone-mineral-density (aBMD) is used clinically as a surrogate for true volumetric-BMD to assess bone fragility. Trabecular-Bone-Score (TBS) provides an assessment of bone quality based on the DXA-derived two-dimensional images. Calculated from bone area (BA), aBMD may under- or overestimate true BMD in individuals with relatively low and high BA respectively. This study investigated relationships between BA at the lumbar-spine (L1–L4) and measurements of BMD and TBS. Lumbar spine scans were performed (GE Lunar Prodigy) on 114 women (mean 53 yrs). The study population was divided by L1–L4 BA using the 20th and 80th centiles, and BMD v TBS correlations calculated for the subgroups. BMD and TBS, converted to Z-scores, were correlated with BA.Introduction
Method
Precision error (PE) in Dual Energy X-Ray Absorptiometry (DXA) is important for accurate monitoring of changes in Bone-Mineral-Density (BMD). It has been demonstrated that BMD PE increases with increasing BMI. In vivo PE for the Trabecular-Bone-Score (TBS) has not been reported. This study aimed to evaluate the short-term PE (STPE)) of BMD and TBS and to investigate the effect of obesity on DXA PE. DXA lumbar spine scans (L1–L4) were performed using GE Lunar Prodigy. STPE was measured in 91 women (Group A) at a single visit by duplicating scans with repositioning in-between. PE was calculated as the percentage coefficient of variation (%CV). Group A was sub-divided into four groups based on BMI (A.1. <25kg/m2, A.2. 25–29.9kg/m2, A.3. 30–35kg/m2 and A.4. >35kg/m2) to assess the effect of obesity on STPE. Abnormally different vertebrae were excluded from the analysis in accordance with The International Society for Clinical Densitometry (ISCD) recommendations.Introduction
Method