header advert
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 142 - 142
1 May 2016
Yoneo T Nakao M Sakai R Fukushima K Uchiyama K Takahira N Mabuchi K
Full Access

Introduction

On the basis of a proposal by Noble, the marrow cavity form can be classified into three categories: normal, champagne-fluted and stovepipe. In the present study, three typical finite element femoral models were created using CT data based on Noble's three categories. The purpose was to identify the relationship of stress distribution of the surrounding areas between femoral bone marrow cavity form and hip stems. The results shed light on whether the distribution of the high-stress area reflects the stem design concept. In order to improve the results of THA, researchers need to consider the instability of a stem design based on the stress distributioin and give feedback on future stem selection.

Methods

As analyzing object, we selected SL-PLUS and BiCONTACT stems. To develop finite element models, two parts (cortical bone and stem) were constructed using four-node tetrahedral elements. The model consisted of about 60,000 elements. The material characteristics were defined by the combination of mass density, elastic coefficient, and Poisson's ratio. Concerning the analysis system, HP Z800 Workstation was used as hardware and LS-DYNA Ver. 971 as software. The distal end of the femur was constrained in all directions. On the basis of ISO 7206 Part 4,8 that specifies a method of endurance testing for joint prostheses, the stem was tilted 10°, and a 1500 N resultant force in the area around the hip joint was applied to the head at an angle of 25° with the long axis. Automatic contact with a consideration of slip was used.