The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.Aims
Methods
To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue.Aims
Methods
Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture). PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health.Aims
Methods
Based on Ilizarov's law of tension-stress principle, distraction histogenesis technique has been widely applied in orthopaedic surgery for decades. Derived from this technique, cranial bone transport technique was mainly used for treating cranial deformities and calvarial defects. Recent studies reported that there are dense short vascular connections between skull marrow and meninges for immune cells trafficking, highlighting complex and tight association between skull and brain. Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia without effective therapy. Meningeal lymphatics have been recognized as an important mediator in neurological diseases. The augmentation of meningeal lymphatic drainage might be a promising therapeutic target for AD. Our proof-of-concept study has indicated that cranial bone transport can promote ischemic stroke recovery via modulating meningeal lymphatic drainage function, providing a rationale for treating AD using cranial bone maneuver (CBM). This study aims to investigate the effects of CBM on AD and to further explore the potential mechanisms. Transgenic 5xFAD mice model was used in this study. After osteotomy, a bone flap was used to perform CBM without damaging the dura. Open filed test, novel object recognition test and Barn's maze test were used to evaluate neurological functions of 5xFAD mice after CBM treatment. Congo red and immunofluorescence staining were used to evaluate amyloid depositions and Aβ plaques in different brain regions. Lymphangiogenesis and the level of VEGF-C were examined after CBM treatment. OVA-A647 was intra-cisterna-magna injected to evaluate meningeal lymphatic drainage function after CBM treatment. CBM significantly improved memory functions and reduced amyloid depositions and Aβ plaques in the hippocampus of 5xFAD mice. A significant increase of meningeal lymphatic vessels in superior sagittal sinus and transverse sinus, and the upregulation of VEGF-C in meninges were observed in 5xFAD mice treated with CBM. Moreover, CBM remarkably enhanced meningeal lymphatic drainage function in 5xFAD mice (n=5-16 mice/group for all studies). CBM may promote meningeal lymphangiogenesis and lymphatic drainage function through VEGF-C-VEGFR3 pathway, and further reduce amyloid depositions and Aβ plaques and alleviate memory deficits in AD.
The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA. This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo).Aims
Methods
The objective of this study was to evaluate the clinical and radiological outcomes of patients younger than six months of age with developmental dysplasia of the hip (DDH) managed by either a Pavlik harness or Tübingen hip flexion splint. Records of 251 consecutive infants with a mean age of 89 days (SD 47), diagnosed with DDH between January 2015 and December 2018, were retrospectively reviewed. Inclusion criteria for patients with DDH were: younger than 180 days at the time of diagnosis; ultrasound Graf classification of IIc or greater; treatment by Pavlik harness or Tübingen splint; and no prior treatment history. All patients underwent hip ultrasound every seven days during the first three weeks of treatment and subsequently every three to four weeks until completion of treatment. If no signs of improvement were found after three weeks, the Pavlik harness or Tübingen splint was discontinued. Statistical analysis was performed.Aims
Methods
Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.Aims
Methods
The zonal organization of articular cartilage is crucial in providing the tissue with mechanical properties to withstand compression and shearing force. Current treatments available for articular cartilage injury are not able to restore the hierarchically organized architecture of the tissue. Implantation of zonal chondrocyte as a multilayer tissue construct could overcome the limitation of current treatments. However, it is impeded by the lack of efficient zonal chondrocyte isolation protocol and dedifferentiation of chondrocytes during expansion on tissue culture plate (TCP). This study aims to develop a protocol to produce an adequate number of high-quality zonal chondrocytes for clinical application via size-based zonal chondrocyte separation using inertial spiral microchannel device and expansion under dynamic microcarrier culture. Full thickness (FT) chondrocytes isolated from porcine femoral condyle cartilage were subjected to two serial of size-based sorting into three subpopulations of different cell sizes, namely small (S1), medium (S2), and large (S3) chondrocytes. Zonal phenotype of the three subpopulations was characterised. To verify the benefit of stratified zonal chondrocyte implantation in the articular cartilage regeneration, a bilayer hydrogel construct composed of S1 chondrocytes overlaying a mixture of S2 and S3 (S2S3) chondrocytes was delivered to the rat osteochondral defect model. For chondrocyte expansion, two dynamic microcarrier cultures, sort-before-expansion and sort-after-expansion, which involved expansion after or before zonal cells sorting, were studied to identify the best sort-expansion strategy. Size-sorted zonal chondrocytes showed zone-specific characteristics in qRT-PCR with a high level of PRG4 expression in S1 and high level of aggrecan, Type II and IX collagen expression in S2 and S3. Cartilage reformation capability of sorted zonal chondrocytes in three-dimensional fibrin hydrogel showed a similar trend in qRT-PCR, histology, extracellular matrix protein quantification and mechanical compression test, indicating the zonal characteristics of S1, S2 and S3 as superficial (SZ), middle (MZ) and deep (DZ) zone chondrocytes, respectively. Implantation of bilayered zonal chondrocytes resulted in better cartilage tissue regeneration in a rat osteochondral defect model than FT control group, with predominantly Type II hyaline cartilage tissue and significantly lower Type I collagen. Dynamic microcarrier expansion of sorted zonal chondrocytes was able to retain the zonal cell size difference that correlate to zonal phenotype, while maintaining the rounded chondrocyte morphology and F-actin distribution similar to that in mature articular cartilage. With the better retention of zonal cell size and zonal phenotype relation on microcarrier, zonal cells separation was achievable in the sort-after-expansion strategy with cells expanded on microcarrier, in comparison to cells expanded on TCP. Inertial spiral microchannel device provides a label-free and high throughput method to separate zonal chondrocytes based on cell size. Stratified implantation of zonal chondrocytes has the potential to improve articular cartilage regeneration. Dynamic microcarrier culture allows for size-based zonal chondrocyte separation to be performed on expanded chondrocytes, thus overcoming the challenge of limited tissue availability from the patients. Our novel zonal chondrocyte isolation and expansion protocol provide a translatable strategy for stratified zonal chondrocyte implantation that could improve articular cartilage regeneration of critical size defects.
Adult articular cartilage mechanical functionality is dependent on the unique zonal organization of its tissue. Current mesenchymal stem cell (MSC)-based treatment has resulted in sub-optimal cartilage repair, with inferior quality of cartilage generated from MSCs in terms of the biochemical content, zonal architecture and mechanical strength when compared to normal cartilage. The phenotype of cartilage derived from MSCs has been reported to be influenced by the microenvironmental biophysical cues, such as the surface topography and substrate stiffness. In this study, the effect of nano-topographic surfaces to direct MSC chondrogenic differentiation to chondrocytes of different phenotypes was investigated, and the application of these pre-differentiated cells for cartilage repair was explored. Specific nano-topographic patterns on the polymeric substrate were generated by nano-thermal imprinting on the PCL, PGA and PLA surfaces respectively. Human bone marrow MSCs seeded on these surfaces were subjected to chondrogenic differentiation and the phenotypic outcome of the differentiated cells was analyzed by real time PCR, matrix quantification and immunohistological staining. The influence of substrate stiffness of the nano-topographic patterns on MSC chondrogenesis was further evaluated. The ability of these pre-differentiated MSCs on different nano-topographic surfaces to form zonal cartilage was verified in in vitro 3D hydrogel culture. These pre-differentiated cells were then implanted as bilayered hydrogel constructs composed of superficial zone-like chondro-progenitors overlaying the middle/deep zone-like chondro-progenitors, was compared to undifferentiated MSCs and non-specifically pre-differentiated MSCs in a osteochondral defect rabbit model. Nano-topographical patterns triggered MSC morphology and cytoskeletal structure changes, and cellular aggregation resulting in specific chondrogenic differentiation outcomes. MSC chondrogenesis on nano-pillar topography facilitated robust hyaline-like cartilage formation, while MSCs on nano-grill topography were induced to form fibro/superficial zone cartilage-like tissue. These phenotypic outcomes were further diversified and controlled by manipulation of the material stiffness. Hyaline cartilage with middle/deep zone cartilage characteristics was derived on softer nano-pillar surfaces, and superficial zone-like cartilage resulted on softer nano-grill surfaces. MSCs on stiffer nano-pillar and stiffer nano-grill resulted in mixed fibro/hyaline/hypertrophic cartilage and non-cartilage tissue, respectively. Further, the nano-topography pre-differentiated cells possessed phenotypic memory, forming phenotypically distinct cartilage in subsequent 3D hydrogel culture. Lastly, implantation of the bilayered hydrogel construct of superficial zone-like chondro-progenitors and middle/deep zone-like chondro-progenitors resulted in regeneration of phenotypically better cartilage tissue with higher mechanical function. Our results demonstrate the potential of nano-topographic cues, coupled with substrate stiffness, in guiding the differentiation of MSCs to chondrocytes of a specific phenotype. Implantation of these chondrocytes in a bilayered hydrogel construct yielded cartilage with more normal architecture and mechanical function. Our approach provides a potential translatable strategy for improved articular cartilage regeneration using MSCs.
Previous work has identified differential kinematics and muscle activity between non-specific chronic low back pain (LBP) subgroups (flexion pattern (FP) and active extension pattern) and healthy controls. However, it is unclear if differences in muscle activity are maintained on resolution of pain and/or if they contribute to pain recurrence. To investigate differences in trunk muscle activity between individuals with a history of flexion-related LBP (who are currently pain-free) and no-LBP controls during three functional activities.Background
Purpose
The primary purpose of this meta-analysis was to determine whether statin usage could reduce the risk of glucocorticoid-related osteonecrosis in animal models. A systematic literature search up to May 2015 was carried out using the PubMed, Ovid, EBM reviews, ISI Web of Science, EBSCO, CBM, CNKI databases with the term and boolean operators: statins and osteonecrosis in all fields. Risk ratio (RR), as the risk estimate of specific outcome, was calculated along with 95% confidence intervals (CI). The methodological quality of individual studies was assessed using a quantitative tool based on the updated Stroke Therapy Academic Industry Roundtable (STAIR) recommendations.Objectives
Methods
Total knee replacement (TKR) is an effective
method of treating end-stage arthritis of the knee. It is not, however,
a procedure without risk due to a number of factors, one of which
is diabetes mellitus. The purpose of this study was to estimate
the general prevalence of diabetes in patients about to undergo
primary TKR and to determine whether diabetes mellitus adversely
affects the outcome. We conducted a systematic review and meta-analysis
according to the Meta-analysis Of Observational Studies in Epidemiology
(MOOSE) guidelines. The Odds Ratio (OR) and mean difference (MD)
were used to represent the estimate of risk of a specific outcome.
Our results showed the prevalence of diabetes mellitus among patients
undergoing TKR was 12.2%. Patients with diabetes mellitus had an increased
risk of deep infection (OR = 1.61, 95% confidence interval (CI),
1.38 to 1.88), deep vein thrombosis (in Asia, OR = 2.57, 95% CI,
1.58 to 4.20), periprosthetic fracture (OR = 1.89, 95% CI, 1.04
to 3.45), aseptic loosening (OR = 9.36, 95% CI, 4.63 to 18.90),
and a poorer Knee Society function subscore (MD = -5.86, 95% CI,
-10.27 to -1.46). Surgeons should advise patients specifically about
these increased risks when obtaining informed consent and be meticulous about
their peri-operative care. Cite this article:
In orthopedic surgeries, it is critical to reduce the risks of drilling complications during bone fracture fixation, especially around critical organs such as in acetabula-pelvic procedures. Either over-drilling or x-ray overuse shall be avoided to reduce potential complications to the surrounding critical organs or tissues. Toward recognising perforation process during bong drilling, we employed drilling vibration signal analysis based on the measurements from miniature inertial sensors. Time-frequency analysis is used for features extractions, which show that information from drilling vibration measurements could reveal the drilling process, hence help doctors track the drilling process and avoid over-drilling. We addressed the aforementioned challenges through inertial sensor development, vibration measurements, and time-frequency signal analysis. In the preliminary ex-vivo bone drilling experiment setup, an inertial sensor is mounted on a pig femur bone with two fixing nails and can capture 3-axes acceleration data during drilling procedures. A cordless drill is used with Kirschner wires (K-wires) and the diameter of the pin is 3.5 mm. The mounting locations of inertial sensors are close to actual drilling entries without affecting normal procedures. The recorded vibration signals indicate how the drill is interacting with surrounding bone tissues, which shall have different patterns along the deep drilling process. After normalisation, the power spectral density (PSD) is calculated to examine the frequency domain representation of the time series during drilling process. As the drilling vibration process along the bone is non-stationary, we further employ wavelet transform for more localised time-frequency analysis. When the bone substance interacts with drill bits, compact substance and spongy substance have different bone densities and structures, thus inducing different vibration waveform patterns. In our preliminary experiments, we recorded acceleration data from the pig femur drilling process, where a surgical drill penetrates from compact substance, spongy substance and then to compact substance again. The article shows the feasibility study of estimating femur bone drilling process based on vibrations signals captured from low-cost miniature inertial sensors. Through a preliminary animal ex-vivo bone study, the proposed framework of time-frequency wavelet analysis indicates the drilling interface between compact substance and spongy substance. It shows potentials in perforation recognition along drilling process and more clinical studies will be performed for validating its capability in over-drilling avoidance.
To introduce a new classification method and analyze related risk factor about lateral wall perforation associated with lower cervical pedicle screw and free-hand insertion technique. A Retrospective study was made to analyze 214 patients (1024 screws) with various cervical spine disorders, involved in pedicle screw instrumentation at C3-7 from July 2004 to July 2009. Researchers assessed the position of the screws in the pedicle by carefully probing intraoperatively and studying postoperative thin-slice computed tomography scan. Perforation of lateral wall was classified into two phases. Phase I refers to the burst of the pedicle by screw, which means that the length of screw threads penetrating the external cortex of pedicles on CT scan is 2 mm, whereas in Phase, the length is >2 mm. The Penetrated screws and related factors were analyzed though Backward Stepwise (Wald) Logistic regression.Introduction
Methods
To identify factors that predict poor patient-reported outcomes in patients with traumatic vertebral body fracture(s) of the thoracic and/or lumbar spine without neurological deficit. There is a paucity of information on factors that predict poor patient-reported outcomes in patients with traumatic vertebral body fracture(s) of the thoracic and/or lumbar spine without neurological deficit. Patients were identified from the Victorian Orthopaedic Trauma Outcomes Registry (VOTOR). VOTOR includes all patients with orthopaedic trauma admitted to the two adult Level 1 trauma centres in Victoria, Australia. Patient-reported outcomes and data on possible predictive factors, including demographic details, injury-related and treatment-based factors, were obtained from the VOTOR database. Patient-reported outcomes were measured at 12 months post-injury using the 12-Item Short-Form Health Survey (SF-12), a Numerical Rating Scale (NRS) for pain, global outcome questions and data was collected on return to work or study. For the identification of predictive factors, univariate analyses of outcome vs. each predictor were carried out first, followed by logistic multiple regression. 344 patients were eligible for the study and data were obtained for 264 (76.7%) patients at 12 months follow-up. Patients reported ongoing pain at 12 months post-injury (moderate–severe: 33.5%), disability (70.1%) and inability to return to work or study (23.3%). A number of demographic, injury-related and treatment-based factors were identified as being predictive of poor patient-reported outcomes. Patients who had associated radius fracture(s) were more likely to have moderate to severe disability (odds ratio (OR) = 3.85, 95% confidence interval = 1.30–11.39), a poorer physical health status (OR = 3.73, 1.37–10.12) and moderate to severe pain (OR = 3.23, 1.22–8.56) at 12 months post-injury than patients without radius fracture. Patients who did not receive compensation for work-related or road traffic-related injuries were less likely to report moderate to severe pain (OR = 0.45, 0.23–0.90) or have a poorer mental health status (OR = 0.17, 0.04–0.70) at 12 months post-injury than those who received compensation. The prognostic factors identified in this study may assist clinicians in the identification of patients requiring more intensive follow-up or additional rehabilitation to ultimately improve patient care.
Once damaged, articular cartilage has limited capacity for self-repair due to their avascular and acellular nature. Tissue engineering approaches using cultured chondrocytes and biomaterials as scaffoldings hold promises for repairing cartilage defects. However, the source of articular chondrocytes is limited and the chon-drocytes may de-differentiate when cultured for a prolonged period. Bone marrow derived mesenchymal stem cells (BMSCs) have multi-differentiation potentials and autologous BMSCs are easy to obtain and culture with no/little immunological reaction when re-implanted. 24 NZW rabbits were used. Rabbit autologous BMSCs were obtained through marrow aspirations and expanded in culture under the chondrogenic induction media (DMEM, 10% FCS, plus 10ng/ml TGF-β1) for 3 weeks. A full-thickness articular cartilage defect (3 mm in diameter and 3 mm in depth) was created on both medial condyles in the rabbit. For experimental group (16 joints), the defects were filled immediately with alginate capsules containing autologous chondrogenic cells (8.5 x 104); for the control groups, the defects were filled with either alginate capsules alone (16 joints) or left untreated (16 joints). All the animals were terminated at 6 and 12 weeks after surgery and the cartilage samples were harvested for histology, immunochemistry and in situ hybridization examinations. For histology, in the experimental group the defects were filled with immature hyaline-like cartilaginous tissues at 6 weeks; by 12 weeks the newly formed cartilage showing signs of remodeling and integrating into the surrounding articular cartilage. The expression of type II collagen in the newly formed cartilaginous tissues was confirmed by immunohistochemistry and by in situ hybridization methods. In the control groups, the defects were mainly filled with fibrous tissues in all the animals at the two time points examined. We have used Wakitani cartilage grading system for semi-quantitative histological evaluation. Significant lower scores (with superior histology) were found in the experimental group comparing to the two control groups. Our results confirmed that full-thickness articular cartilage defects can be repaired by chondrogenically differentiated autologous BMSCs seeded into alginate capsules. Further studies are ongoing to explore the long term outcome of this treatment approach as well as using new scaffolds for cartilage tissue engineering.