The aim of this study was to determine if elite athletes could return to professional sport after MCL or PLC reconstruction using LARS ligaments and to demonstrate the safety and efficacy of LARS by reporting sport longevity, subsequent surgeries and complications. A retrospective review of all extra-articular knee ligament reconstructions in elite athletes utilising LARS ligaments by 3 knee surgeons between January 2013 and October 2020 was undertaken. Return to play (RTP) was defined as competing at professional level or national/ international level in amateur sport.Abstract
Introduction
Methods
The aim of this study was to determine the factors affecting return to sport (RTS) and career longevity of elite athletes after microfracture of the knee. A retrospective review of a consecutive series of elite athletes with chondral injuries in the knee treated with microfracture was undertaken. RTS was defined as competing in at least one event at professional level or national/ international level in amateur sport. Demographic, pre, intra and post operative factors affecting RTS were analysed.Abstract
Introduction
Methods
The study aims were to demonstrate rates, level, and time taken to RTP in elite sports after ACL reconstruction (ACL-R) and compare football and rugby. A retrospective review of a consecutive series of ACL-R between 2005 and 2019 was undertaken. Patients were included if they were elite athletes and were a minimum of 2 years post primary autograft ACL-R. The outcomes measured were return to play (RTP), (defined as participation in a professional match or in national/ international level amateur competition), time to RTP after surgery, and RTP level (Tegner score).Abstract
Introduction
Methods
Persistent medial laxity increases the risk of failure for ACL reconstruction. To address this, multiple reconstruction techniques have been created. To date, no single strand reconstruction constructs have been able to restore both valgus and rotational stability. In response to this, a novel single strand Short Isometric Construct (SIC) MCL reconstruction was developed. Eight fresh-frozen cadaveric specimens were tested in three states: 1) intact 2) after sMCL and dMCL transection, and 3) after SIC MCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 90N anterior drawer, 5Nm tibial external rotation torque, 8Nm valgus torque, and combined 90N anterior drawer plus 5Nm tibial external rotation torque.Abstract
Introduction
Methods
Historic MCL reconstruction techniques focused on the superficial MCL to restore valgus stability while overlooking tibial external rotation and the deep MCL. This study assessed the ability of a contemporary medial collateral ligament (MCL) reconstruction and a deep MCL (dMCL) reconstruction to restore rotational and valgus knee stability. Six pairs fresh-frozen cadaveric knee specimens with intact soft tissue were tested in four states: 1) intact 2) after sMCL and dMCL sectioning, 3) contemporary MCL reconstruction (LaPrade et al), and 4) dMCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 8Nm valgus torque, 5Nm tibial external rotation torque, 90N anterior drawer, and combined 90N anterior drawer plus 5Nm tibial external rotation torque.Abstract
Introduction
Methods
The aim of this study was to determine which factors affect a professional footballer's return to play performance level after ACL reconstruction (ACL-R). Additionally, to report their playing performance at 2 and 5 years post ACL-R compared to their preinjury performance. A retrospective review of a consecutive series of primary ACL-R undertaken in professional footballers between 2005 and 2019 was undertaken. Performance was determined by the number of minutes played and the league level compared to their pre-injury baseline. Playing time (minutes) was classified as same (within 20%), more, or less playing time for each season compared to the one year prior to surgery.Abstract
Introduction
Methods
Previous research has shown that, notwithstanding ligament healing, properly selected MCL reconstruction can restore normal knee stability after MCL rupture. The hypothesis of this work was that it is possible to restore knee stability (particularly valgus and AMRI) with simplified and/or less-invasive MCL reconstruction methods. Nine unpaired human knees were cleaned of skin and fat, then digitization screws and optical trackers were attached to the femur and tibia. A Polaris stereo camera measured knee kinematics across 0o-100o flexion when the knee was unloaded then with 90N anterior-posterior force, 9Nm varus-valgus moment, 5Nm internal-external rotation, and external+anterior (AMRI) loading. The test was conducted for the following knee conditions: intact, injured: transected superficial and deep MCL (sMCL and dMCL), and five reconstructions: (long sMCL, long sMCL+dMCL, dMCL, short sMCL+dMCL, short sMCL), all based on the medial epicondyle isometric point and using 8mm tape as a graft, with long sMCL 60mm below the joint line (anatomical), short sMCL 30mm, dMCL 10mm (anatomical).Abstract
Introduction
Methods
MCL injuries often occur concurrently with ACL rupture – most noncontact ACL injuries occur in valgus and external rotation (ER) - and conservative MCL treatment leads to increased rate of ACL reconstruction failure. There has been little work developing effective MCL reconstructions. Cadaveric work measured MCL attachments by digitisation and radiographically, relating them to anatomical landmarks. The isometry of the superficial and deep MCL (sMCL and dMCL) and posterior oblique ligament (POL) was measured using fine sutures led to displacement transducers. Contributions to stability (restraint) were measured in a robotic testing system. Two MCL reconstructions were designed and tested: 3-strand reconstruction (sMCL+dMCL+POL), and 2-strand method (sMCL+dMCL) addressing anteromedial rotatory instability (AMRI). The resulting stability was measured in a kinematics test rig, and compared to the ‘anatomic’ sMCL+POL reconstruction of LaPrade.Abstract
Introduction
Methods
The popularity of all-inside meniscal repair devices has led to a shift away from inside-out meniscus repair without comparative studies to support the change. The aim of this study was to compare the failure rate and time to failure of all-inside and inside-out meniscus repair performed in elite athletes. A retrospective review was performed of all elite athletes who underwent meniscal repair, with a minimum of two-year follow-up between 2013 and 2019. Repairs were classified as all-inside or inside-out according to the repair technique. Failure was defined as undergoing a subsequent surgery to address a persistent meniscal tear.Abstract
Introduction
Methodology
Performing lateral extra-articular tenodesis (LET) with ACL reconstruction may conflict with the ACLR femoral tunnel. 12 fresh-frozen cadaveric knees were used: at 120 flexion, an 8mm ACLR femoral tunnel was drilled in the anteromedial bundle position via the anteromedial portal. A modified Lemaire LET was performed using a 1 cm-wide iliotibial band strip left attached to Gerdy's tubercle. The LET femoral fixation point was identified 10mm proximal / 5 mm posterior to the LCL femoral attachment, and a 2.4-mm guide wire was drilled, aiming at 0, 10, 20, or 30 degrees anteriorly in the axial plane, and at 0, 10, or 20 degrees proximally in the coronal plane. The relationship between the LET drilling guide wire and the ACLR femoral tunnel reamer was recorded for each combination. When collision with the femoral tunnel was recorded, the LET wire depth was measured.Abstract
Background
Methods
Little scientific evidence is available regarding the effect of knee joint line obliquity (JLO). 10 fresh-frozen human cadaveric knees were axially loaded to 1500 N in a materials testing machine with the joint line tilted 0, 4, 8, and 12 degrees varus and valgus, at 0, and 20 degrees of knee flexion. The mechanical compression axis was aligned to the centre of the tibial plateau. Contact pressures / areas were recorded by sensors inserted between the tibia and femur below the menisci. Changes in relative femoral and tibial position in the coronal plane were obtained by an optical tracking system.Abstract
Background
Methods
Anterolateral procedures can reduce the risk of re-rupture after ACL reconstruction in high risk patients however, this effectiveness has never been evaluated in elite athletes. The purpose of this study was to evaluate the effectiveness of lateral extra-articular tenodesis in reducing revision rates in ACL reconstructions in elite athletes. A consecutive cohort of elite athletes between 2005 and 2018 undergoing ACLR reconstruction with or without modified Lemaire lateral extra-articular tenodesis were analysed. A minimum of 2 years of follow-up was required. The association between the use of LET and ACL graft failure was evaluated with univariate and multivariate logistic regression models.Abstract
Introduction
Methodology
Elite athletes sustaining a graft re-rupture after ACL reconstruction (ACL-R) undergo revision reconstruction to enable their return to elite sport. The aim of this study was to determine the rate of return to play (RTP) and competition levels at 2 and 5 years post revision ACL-R. A consecutive series of revision ACL-R in elite athletes undertaken by the senior author between 2009 and 2019 was retrospectively reviewed. Outcome measures were RTP rates and competition level.Abstract
Introduction
Methodology
Anterior cruciate ligament (ACL) reconstruction
is commonly performed and has been for many years. Despite this, the
technical details related to ACL anatomy, such as tunnel placement,
are still a topic for debate. In this paper, we introduce the flat
ribbon concept of the anatomy of the ACL, and its relevance to clinical
practice. Cite this article:
There have been differing descriptions of the
anterolateral structures of the knee, and not all have been named
or described clearly. The aim of this study was to provide a clear
anatomical interpretation of these structures. We dissected 40 fresh-frozen
cadaveric knees to view the relevant anatomy and identified a consistent
structure in 33 knees (83%); we termed this the anterolateral ligament
of the knee. This structure passes antero-distally from an attachment
proximal and posterior to the lateral femoral epicondyle to the
margin of the lateral tibial plateau, approximately midway between
Gerdy’s tubercle and the head of the fibula. The ligament is superficial
to the lateral (fibular) collateral ligament proximally, from which
it is distinct, and separate from the capsule of the knee. In the
eight knees in which it was measured, we observed that the ligament
was isometric from 0° to 60° of flexion of the knee, then slackened
when the knee flexed further to 90° and was lengthened by imposing
tibial internal rotation. Cite this article:
Most injuries to the medial collateral ligament (MCL) heal well after conservative treatment. We have identified a subgroup of injuries to the deep portion of the MCL which is refractory to conservative treatment and causes persistant symptoms. They usually occur in high-level football players and may require surgical repair. We describe a consecutive series of 17 men with a mean age of 29 years (18 to 44) who were all engaged in high levels of sport. Following a minor injury to the MCL there was persistent tenderness at the site of the proximal attachment of the deep MCL. It could be precipitated by rapid external rotation at the knee by clinical testing or during sport. The mean time from injury to presentation was 23.6 weeks (10 to 79) and none of the patients had responded to conservative treatment. The surgical finding was a failure of healing of a tear of the deep MCL at its femoral origin which could be repaired. After a period of postoperative protective bracing and subsequent rehabilitation the outcome was good. All the patients returned to their sports and remained asymptomatic at a mean of 48 weeks (28 to 60) post-operatively. Recognition of this subgroup is important since the clinical features, the course of recovery and surgical requirement differ from those of most injuries to the MCL.
The potential harm to the growth plate following reconstruction of the anterior cruciate ligament in skeletally-immature patients is well documented, but we are not aware of literature on the subject of the fate of the graft itself. We have reviewed five adolescent males who underwent reconstruction of the ligament with four-strand hamstring grafts using MR images taken at a mean of 34.6 months (18 to 58) from the time of operation. The changes in dimension of the graft were measured and compared with those taken at the original operation. No growth arrest was seen on radiological or clinical measurement of leg-length discrepancy, nor was there any soft-tissue contracture. All the patients regained their pre-injury level of activity, including elite-level sport in three. The patients grew by a mean of 17.3 cm (14 to 24). The diameter of the grafts did not change despite large increases in length (mean 42%; 33% to 57%). Most of the gain in length was on the femoral side. Large changes in the length of the grafts were seen. There is a considerable increase in the size of the graft, so some neogenesis must occur; the graft must grow.
We reviewed the relationship between the pattern of damage to the posterolateral corner of the knee and the position of the common peroneal nerve in 54 consecutive patients with posterolateral corner disruption requiring surgery. We found that 16 of the 18 patients with biceps avulsions or avulsion-fracture of the fibular head had a displaced common peroneal nerve. The nerve was pulled anteriorly with the biceps tendon. None of the 34 proximal injuries resulted in an abnormal nerve position. Whenever bone or soft-tissue avulsion from the fibular head is suspected, the surgeon should expect an abnormal position of the common peroneal nerve and appreciate the increased risk of iatrogenic damage.
We present the first study in vivo of meniscal movement in normal knees under load. Using an open MR scanner, allowing imaging in physiological positions in near to real-time, 16 young footballers were scanned moving from full extension to 90° flexion in the sagittal and coronal planes. Excursion of the meniscal horns, radial displacement and meniscal height were measured. On weight-bearing, the anterior horn of the medial meniscus moves through a mean of 7.1 mm and the posterior horn through 3.9 mm, with 3.6 mm of mediolateral radial displacement. The height of the anterior horn increases by 2.6 mm and that of the posterior horn by 2.0 mm. The anterior horn of the lateral meniscus moves 9.5 mm and the posterior horn 5.6 mm, with 3.7 mm of radial displacement. The height of the anterior horn increases by 4.0 mm, and that of the posterior horn by 2.4 mm. In non-weight-bearing, the anterior horn of the medial meniscus moves 5.4 mm and the posterior horn 3.8 mm, with 3.3 mm of radial displacement. The anterior horn of the lateral meniscus moves 6.3 mm, and the posterior horn 4.0 mm, with 3.4 mm of radial displacement. The most significant differences between weight-bearing and non-weight-bearing were the movement and vertical height of the anterior horn of the lateral meniscus.