As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal bone substitute should provide sufficient mechanical support, but pure Zn itself is not strong enough for load-bearing medical applications. Modern processing techniques, like additive manufacturing (AM), can improve mechanical strength of Zn. To better mimic the in vivo situation in the human body, we evaluated the degradation behavior of porous Zn implants in vitro under dynamic conditions. Our study applied selective laser melting (SLM) to build topographically ordered absorbable Zn implants with superior mechanical properties. Specimens were fabricated from pure Zn powder using SLM and diamond unit cell topological design. In vitro degradation was performed under both static and dynamic conditions in a custom-built set-up under cell culture conditions (37 °C, 20% O2 and 5% CO2) for up to 28 days. Mechanical properties of the porous structures were determined according to ISO 13314: 2011 at different immersion time points. Modified ISO 10993 standards were used to evaluate biocompatibility through direct cell seeding and indirect extract-based cytotoxicity tests (MTS assay, Promega) against identically designed porous titanium (Ti-6Al-4V) specimens as reference material. Twenty-four hours after cell seeding, its efficacy was evaluated by Live-Dead staining (Abcam) and further analyzed using dual channel fluorescent optical imaging (FOI) and subsequent flow cytometric quantification. Porous Zn implants were successfully produced by means of SLM with a yield strength and Young's modulus in the range of 3.9–9.6 MPa and 265–570 MPa, respectively. Dynamic flow significantly increased the degradation rate of AM porous Zn after 28 days. Results from Zn extracts were similar to Ti-6Al-4V with >95% of cellular activity at all tested time points, confirming level 0 cytotoxicity (i.e., This study clearly shows the great potential of AM porous Zn as a bone substituting material. Moreover, we demonstrate that complex topological design permits control of mechanical properties and degradation behavior.
Direct metal printed (DMP) porous iron implants possess promising mechanical and corrosion properties for various clinical application. Nevertheless, there is a requirement for better co-relation between in vitro and in vivo corrosion and biocompatibility behaviour of such biomaterials. Our present study evaluates absorption of porous iron implants under both static and dynamic conditions. Furthermore, this study characterizes their cytocompatibility using fibroblastic, osteogenic, endothelial and macrophagic cell types. In vitro degradation was performed statically and dynamically in a custom-built set-up placed under cell culture conditions (37 °C, 5% CO2 and 20% O2) for 28 days. The morphology and composition of the degradation products were analysed by scanning electron microscopy (SEM, JSM-IT100, JEOL). Iron implants before and after immersion were imaged by μCT (Quantum FX, Perkin Elmer, USA). Biocompatibility was also evaluated under static and dynamic in vitro culture conditions using L929, MG-63, HUVEC and RAW 264.7 cell lines. According to ISO 10993, cytocompatibility was evaluated directly using live/dead staining (Live and Dead Cell Assay kit, Abcam) in dual channel fluorescent optical imaging (FOI) and additionally quantified by flow cytometry. Furthermore, cytotoxicity was indirectly quantified using ISO conform extracts in proliferation assays. Strut size of DMP porous iron implants was 420 microns, with a porosity of 64% ± 0.2% as measured by micro-CT. After 28 days of physiological degradation in vitro, dynamically tested samples were covered with brownish degradation products. They revealed a 5.7- fold higher weight loss than statically tested samples, without significant changes in medium pH. Mechanical properties (E = 1600–1800 MPa) of these additively manufactured implants were still within the range of the values reported for trabecular bone, even after 28 days of biodegradation. Less than 25% cytotoxicity at 85% of the investigated time points was measured with L929 cells, while MG-63 and HUVEC cells showed 75% and 60% viability, respectively, after 24 h, with a decreasing trend with longer incubations. Cytotoxicity was analysed by two-way ANOVA and post-hoc Tukey's multiple comparisons test. Under dynamic culture conditions, live-dead staining and flow cytometric quantification showed a 2.8-fold and 5.7-fold increase in L929 and MG-63 cell survival rates, respectively, as compared to static conditions. Therefore, rationally designed and properly coated iron-based implants hold potential as a new generation of absorbable Orthopaedic implants.
The ideal bone substituting biomaterials should possess bone-mimicking mechanical properties; have of porous interconnected structure, and adequate biodegradation behaviour to enable full recovery of bony defects. Direct metal printed porous scaffolds hold potential to satisfy all these requirements and were additively manufactured (AM) from atomized WE43 magnesium alloy powder with grain sizes between 20 and 60 μm. Their micro-structure, mechanical properties, degradation behavior and biocompatibility was then evaluated
As cartilage has poor intrinsic repair capacity, i HACs from OA patients (p1) were cultured in cytokine-free medium of 280 or 380 mOsm, under standard 2D Physiological osmolarity increased TGFβ2 and TGFβ3 mRNA expression, TGFβ2 protein secretion as well as general TGFβ activity by 380 mOsm. Upon TGFβ2 isoform-specific knockdown COL2 mRNA expression was induced. TGFβ2 RNAi induced expression of several BMPs (e.g. BMP2,-4,-6) and this induction was enhanced in culture conditions with physiological osmolarity. Dorsomorphin inhibited physiological osmolarity induced COL2 mRNA expression. TGFβ2 knockdown under 380 mOsm increases COL2 expression in human osteoarthritic chondrocytes
Electromagnetic fields (EMF) are widely used in musculoskeletal
disorders. There are indications that EMF might also be effective
in the treatment of osteoporosis. To justify clinical follow-up
experiments, we examined the effects of EMF on bone micro-architectural
changes in osteoporotic and healthy rats. Moreover, we tested the
effects of EMF on fracture healing. EMF (20 Gauss) was examined in rats (aged 20 weeks), which underwent
an ovariectomy (OVX; n = 8) or sham-ovariectomy (sham-OVX; n = 8).
As a putative positive control, all rats received bilateral fibular
osteotomies to examine the effects on fracture healing. Treatment
was applied to one proximal lower leg (three hours a day, five days
a week); the lower leg was not treated and served as a control.
Bone architectural changes of the proximal tibia and bone formation
around the osteotomy were evaluated using Objectives
Methods