Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 104 - 104
1 Mar 2017
Yamane S Moro T Kyomoto M Watanabe K Takatori Y Tanaka S Ishihara K
Full Access

Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE) tibial inserts. To decrease the risks of these surface damages, the oxidation degradation of cross-linked polyethylene (PE) induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization should be prevented. Vitamin E (VE), as an antioxidant, blended PE (PE(VE)) has been used to solve the problems. In addition, osteolysis induced by PE wear particles, bone cement and metallic debris is recognized as one of the important problems for total knee arthroplasty (TKA). To decrease the generation of PE wear particles, we have developed the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface having high wear resistance. In this study, we have evaluated the surface, mechanical under severe oxidative condition, and wear properties of PMPC-grafted cross-linked PE(VE) (PMPC-CLPE(VE)) material for artificial knee joints.

Untreated and PMPC-grafted 0.1 mass% VE-blended PE (GUR1020E resin) with a gamma-ray irradiation of 100 kGy for cross-linking and 25 kGy for sterilization were prepared (CLPE(VE) and PMPC-CLPE(VE), respectively). Surface properties were evaluated by Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscope (TEM) observations. Surface wettability and frictional property were measured by static water contact angle measurement and ball-on-plate friction test. To evaluate the oxidation degradation resistance, mechanical and physical properties such tensile test, izod impact test, small punch test and cross-link density measurement before and after accelerated aging were measured. Wear properties of the tibial inserts were examined by using knee simulator in the combination of Co-Cr-Mo femoral components according to ISO14243-3. Gravimetric wear, volumetric penetration and the number of generated wear particles were measured.

By the FT-IR measurements and TEM observation, P–O peaks attributed to MPC unit and uniform PMPC layer with 100–200 nm thick was observed only on PMPC-CLPE(VE) surface. Static water contact angle of CLPE(VE) was almost 100 degree, while that of PMPC-CLPE(VE) decreased significantly to almost 35 degree. There was no significant difference in the mechanical and physical properties between CLPE(VE) and PMPC-CLPE(VE). Moreover, both the CLPE(VE) and PMPC-CLPE(VE) maintained these properties even after the accelerated aging of 12 weeks [Fig. 1]. Blended VE in CLPE would act as radical scavengers to prevent oxidation degradation. In the knee simulator wear test, the PMPC-CLPE(VE) tibial inserts showed about a half gravimetric wear compared to the CLPE(VE) tibial inserts [Fig. 2]. This would be due to the significant differences observed in wettability of the surface. Water thin film formed on the hydrated PMPC graft layer, would act as significantly efficient lubricant.

From these results, the PMPC-CLPE(VE) is expected to be one of the great bearing materials not only preventing surface damages due to higher contact stress and oxidation degradation but also improving wear resistance, and to provide much more lifelong artificial knee joints.

For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 137 - 137
1 Jan 2016
Yamane S Kyomoto M Watanabe K Moro T Takatori Y Tanaka S Ishihara K
Full Access

To prevent aseptic loosening resulting from osteolysis induced by polyethylene (PE) wear particles in THA, it is necessary to develop a high wear-resistance bearing material. We have investigated the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface. High wear-resistance of PMPC-grafted surface has been revealed in the hip simulator wear test of 20 million cycles. Additionaly, in THA, oxidation degradation induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization is also regarded as serious issue. Recently, gas plasma (GP) sterilization has been used as a less residual radical sterilization method. In this study, we ask a question: the GP sterilization would affect to PMPC surface and/or PE substrate? Hence, we investigated surface chemical, wear, mechanical, physical and oxidation properties of GP sterilized PMPC-grafted highly cross-linked PE (CLPE).

GP-sterilized CLPE and PMPC-grafted CLPE (CLPE (GP) and PMPC-CLPE (GP), respectively; GUR 1020 resin, 75 kGy irradiation), and 25 kGy-gamma-sterilized PMPC-grafted CLPE (PMPC-CLPE (g); GUR 1020 resin, 50 kGy irradiation) were evaluated. Surface property of PMPC layer was evaluated by X-ray photoelectron spectroscopy (XPS), fourier-transform infrared (FT-IR) spectroscopy, fluorescence microscope and cross-sectional transmission electron microscope (TEM) observations. Wettability and lubrication of the PMPC-CLPE surface were evaluated by static water contact angle measurement and ball-on-plate friction test, respectively. Wear properties of the acetabular cups were examined by using hip simulator in the combination with Co-Cr-Mo femoral heads. To evaluate the GP sterilization effect to the CLPE substrate, tensile test, izod impact test, small punch test, gel content, residual radical concentration and oxidation degradation were conducted. Oxidation degradation was evaluated as oxidation index by using a FT-IR spectroscopy.

By the XPS and FT-IR measurements, phosphorus peak and P-O peak attributed to grafted PMPC were observed, respectively. Uniform PMPC layer (100–200 nm thick) was observed on both surfaces of PMPC-CLPE (g) and PMPC-CLPE (GP) [Fig. 1]. Water contact angle of CLPE (GP) was almost 100 degree, while those for PMPC-CLPE (g) and PMPC-CLPE (GP) decreased dramatically to almost 10 degree. Dynamic coefficient of friction of PMPC-CLPE (g) and PMPC-CLPE (GP) was lower than that for CLPE (GP). In the hip simulator wear test, PMPC-CLPE (g) and PMPC-CLPE (GP) cups showed significantly lower amount of wear than that of CLPE (GP) [Fig. 2]. The number of the wear particles was extremely less in PMPC-CLPE (g) and PMPC-CLPE (GP), though the size was not different of all cases. Water thin film might be formed at the grafted PMPC layer, which acted as significantly efficient lubricant. There was no difference in the mechanical and physical properties among three groups. Oxidation index for PMPC-CLPE (GP) after acceleration of aging was lower than that of PMPC-CLPE (g). The GP sterilization might affect only to the PMPC-grafted surface, whereas gamma irradiation affects also to the PE substrate.

From these results, the PMPC-CLPE (GP) is expected to be one of the great bearing materials having not only high-wear resistance but also high-oxidation resistance, which could give further longevity of implantation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 121 - 121
1 Jan 2016
Watanabe K Kyomoto M Yamane S Ishihara K Takatori Y Tanaka S Moro T
Full Access

The modification of bearing surfaces with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is known to increase the hydration of the surfaces and decrease the wear of the substrates. PMPC grafting to acetabular liner of total hip arthroplasty showed a drastic reduction of cross-linked polyethylene (CLPE) wear in a long-term hip simulator test and achieved a good short-term clinical result. To apply this technique to other joint prostheses, the wear resistance under various conditions needs to be evaluated because every joint has a different wear mode. ASTM F732 gives a method that disk shaped polymer specimen is loaded with hemispherical pin using pin-on-disk tester, which is suitable for hydrated polymer because the lubricant is supplied every loading cycle on the surface. The purpose of this study is to evaluate the performance of PMPC-grafted hydrated CLPE under multidirectional wear condition in anticipation of applying PMPC to various prostheses.

The CLPE disks of 3 or 6-mm in thickness were machined from a bar stock. The PMPC was grafted onto the CLPE surfaces using a photoinduced polymerization of MPC in aqueous medium. All disks were irradiated with a total amount of 75-kGy gamma-ray. The wear resistance of the CLPE and PMPC-grafted CLPE disks against Co-Cr-Mo alloy pin was evaluated using Ortho-POD pin-on-disk tester. The disks were fixed to the tester with a Ti-6Al-4V alloy plate that has screw hole in the center. The test conditions were a static load of 213 N, sliding shape of 5 mm × 10 mm rectangular, frequency of 1 Hz and maximum cycles of 1.0 × 106 [Fig. 1]. Gravimetric wear was determined by weighing the disks and soak controls were used to compensate for the fluid absorption. After the wear test, volumetric changes of sliding and backside surfaces of disks were evaluated using a noncontact optical three-dimensional profiler.

The PMPC-grafted surface showed decrease in the gravimetric wear drastically [Fig. 2]. The thickness of CLPE had no substantial effect on the wear resistance. Three-dimensional profile measurements of sliding surfaces detected a substantial volumetric penetration; the corner of sliding track were deeper than the straight-line portion. Backside extrusion was observed in all disks. The thickness of CLPE affected both volumetric penetration and backside extrusion for both untreated and PMPC-grafted CLPE. The PMPC grafting had no discernible effect on volumetric changes [Fig. 3].

Results of this study revealed: (1) the PMPC-grafted surface decreases wear of CLPE, however, the thickness of disk has no effect, in contrast, (2) thinner thickness of CLPE increases the volumetric changes including penetration in sliding surface and extrusion in back surface but the PMPC-grafted surface has no effect. Gravimetric wear did not correlate with the volumetric penetration in sliding surface because the volumetric penetration might be caused by not only the wear but also the creep deformation. In conclusion, hydrated bearing surface and thickness of bearing substrate are essential for the wear and fatigue resistance properties for an increasing longevity of artificial joint. In addition, PMPC grafting is a promising technique for increasing the longevity of various joint prostheses.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 124 - 124
1 Jan 2016
Watanabe K Kyomoto M Yamane S Ishihara K Takatori Y Tanaka S Moro T
Full Access

The main objective of joint arthroplasty is to improve activities of daily living of the patient. However, normal daily activities may lead to separation of articular surfaces of an artificial joint, possibly as a result of a combined impact and sliding motion. Therefore, the properties of articular surfaces define the durability of implant materials. Modification of bearing surfaces with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) increases the hydration of the surfaces and decreases the wear of the substrates. Hence, a PMPC layer can potentially cushion the impact and improve the resistance of cross-linked polyethylene (CLPE). This study aimed to explore the fatigue and wear resistance of PMPC-grafted hydrated CLPE under impact-to-wear conditions using a pin-on-disk tester.

The surfaces of a CLPE disk (3- or 6-mm thick) were modified with PMPC by photoinduced polymerization and were sterilized using gamma rays. The wear resistance of PMPC-grafted CLPE disks against a Co-Cr-Mo alloy pin was evaluated and compared to that of untreated disks. The disks were fixed to the tester with a metal plate (Ti-6Al-4V alloy) that had a central hole. The test was performed for 2 × 106 cycles of repetitive impact and unidirectional sliding with the maximum load of 150 N, sliding distance of 10 mm, and frequency of 1 Hz [Fig. 1]. Gravimetric wear was determined by weighing the disks, and soak controls were used to compensate for fluid absorption. Volumetric changes in the surfaces of the disks were evaluated using a three-dimensional non-contact optical profiler.

The average gravimetric wear (mg) after 2 × 106 cycles was 0.000/0.120 for CLPE (3/6 mm) and −0.073/–0.137 for PMPC-CLPE (3/6 mm). The weight gain of the PMPC-CLPE disks was due to their greater fluid absorption compared to that of the soak controls under the impact-to-wear conditions, as judged from the fact that during the load-soak in the lubricant this gain was observed for all the disks irrespectively of PMPC grafting. PMPC-grafting decreased the gravimetric wear of CLPE (p < 0.01) in the 6-mm group, whereas the thickness of the CLPE disks had no substantial effect on the wear resistance [Fig. 2]. In all cases, three-dimensional measurements detected a remarkable volumetric penetration in the impact-sliding surfaces and an extrusion of CLPE from the backside surfaces into the hole in the metal plate. Both the volumetric penetration and backside extrusion were smaller in the 6-mm group. The PMPC grafting had no discernible effect on these volumetric changes [Fig. 3]. Even after 2 × 106 cycles of impact loads, mechanical fracture or delamination of the impact-sliding or backside surfaces were hardly observed in all the groups.

The results of this study revealed that: (1) PMPC-grafting of CLPE surfaces decreased the gravimetric wear irrespectively of the disk thickness; and (2) thinner CLPE increased the risk of volumetric changes, including penetration in the impact-sliding surface and extrusion of the backside surface. In conclusion, PMPC grafting can potentially improve the wear resistance of the bearing surface of biomaterials even under impact-to-wear conditions, increasing the longevity of artificial joints.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 24 - 24
1 Oct 2012
Tokunaga K Watanabe K
Full Access

Total hip arthroplasty (THA) using minimally invasive surgeries (MIS) now become popular operative procedures. It is not easy to understand geometric information of pelvis and femur in the restricted operative fields during MIS-THA. Recently, THA in supine position comes into the limelight again to place acetabular cups in an optimum position because we can minimise the intra-operative pelvic motion during THA in supine position. To verify the usefulness of supine position, we measured the angels of acetabular trial cups intra-operatively using the CT-based navigation system. The trial cup positions were placed according to a conventional acetabular cup alignment guide. We compared the angles of acetabular trial cups between supine and lateral positions through the same MIS antero-lateral (AL) surgical approach.

Thirty eight hips underwent THA in lateral position (the AL group; average age: 63.9 years old, female: 29 cases, 33 hips, male: 5 cases, 5 hips) and 40 hips underwent THA in supine position (the AL Supine group; average age: 62.2 years old, female 40 cases, 40 hips) were subjected in this study. The single surgeon (the first author) performed all surgeries. We used the Roettinger's modified Watson-Jones approach in both groups. The pelvic registration for navigation was carried out using the CT-fluoro matching procedure with VectorVision Hip (BrainLAB, Germany). After acetabular reaming, the acetabular trial cups were placed into the reamed acetabulum to be at 45 degrees of operative inclination (OI) and at 20 degrees of operative anteversion (OA) using a conventional acetabular cup alignment guide. These angles of the trial cups were measured intra-operatively using the CT-based navigation system, VectorVision Hip. After removing the acetabular trial cup, the acetabular cups were placed using the navigation system. Trilogy cups (Zimmer, USA) and AMS HA shells (JMM, Japan) were used in this study.

The average angles of OI were 45.7 degrees (SD 5.5 degrees) in the AL group and 46.3 degrees (SD 4.6 degrees) in the AL Supine group. The average angles of OA were 30.0 degrees (SD 13.5 degrees) in the AL group and 23.5 degrees (SD 8.2 degrees) in the AL Supine group. The hip numbers whose errors were less than 10 degrees were 13 hips in the AL group and 26 hips in the AL Supine group, respectively. There was significant difference in hip numbers whose errors of angles were less than 10 degrees between the AL and Supine groups. The hip numbers whose errors were less than 5 degrees were 7 hips in the AL group and only 6 hips in the AL Supine group, respectively. There was no significant difference in hip numbers whose errors of angles were less than 5 degrees between the AL and Supine groups. The error values of OI were less than 10 degrees except one hip in both groups. However, the error values of 25 hips in the AL group were more than 10 degrees.

In lateral position, the pelvis easily rotated when the affected lower extremity was extended, externally rotated, and adducted during the femoral preparation in the AL group, which resulted in malalignment of acetabular OA. In contrast, most hips could be set with the error values less than 10 degrees in the AL Supine position because the pelvis could be stabilised on the operative table. In addition, landmarks, such as bilateral antero-superior iliac spines and the symphysis pubis, were palpable in supine position. However, the hips with error values less than 5 degrees were only 6 out of 40 hips even though in supine position. Using MIS techniques, we can provide more stable hip joint just after surgery since the muscles surrounding hip joints can be preserved. We have to place acetabular cups in an optimum position to achieve wide range of hip motion to prevent dislocation and to provide limitation-free daily activities for patients. These data suggests that we should use more accurate guide systems for acetabular cup replacement such as navigation systems, patient specific templates, and patient specific mechanical instruments to place acetabular cups in an optimum position.