Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

TOTAL HIP ARTHROPLASTY IN SUPINE POSITION USING A CONVENTIONAL CUP ALIGNMENT GUIDE CANNOT ALWAYS PROVIDE AN OPTIMUM POSITION FOR ACETABULAR CUPS

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

Total hip arthroplasty (THA) using minimally invasive surgeries (MIS) now become popular operative procedures. It is not easy to understand geometric information of pelvis and femur in the restricted operative fields during MIS-THA. Recently, THA in supine position comes into the limelight again to place acetabular cups in an optimum position because we can minimise the intra-operative pelvic motion during THA in supine position. To verify the usefulness of supine position, we measured the angels of acetabular trial cups intra-operatively using the CT-based navigation system. The trial cup positions were placed according to a conventional acetabular cup alignment guide. We compared the angles of acetabular trial cups between supine and lateral positions through the same MIS antero-lateral (AL) surgical approach.

Thirty eight hips underwent THA in lateral position (the AL group; average age: 63.9 years old, female: 29 cases, 33 hips, male: 5 cases, 5 hips) and 40 hips underwent THA in supine position (the AL Supine group; average age: 62.2 years old, female 40 cases, 40 hips) were subjected in this study. The single surgeon (the first author) performed all surgeries. We used the Roettinger's modified Watson-Jones approach in both groups. The pelvic registration for navigation was carried out using the CT-fluoro matching procedure with VectorVision Hip (BrainLAB, Germany). After acetabular reaming, the acetabular trial cups were placed into the reamed acetabulum to be at 45 degrees of operative inclination (OI) and at 20 degrees of operative anteversion (OA) using a conventional acetabular cup alignment guide. These angles of the trial cups were measured intra-operatively using the CT-based navigation system, VectorVision Hip. After removing the acetabular trial cup, the acetabular cups were placed using the navigation system. Trilogy cups (Zimmer, USA) and AMS HA shells (JMM, Japan) were used in this study.

The average angles of OI were 45.7 degrees (SD 5.5 degrees) in the AL group and 46.3 degrees (SD 4.6 degrees) in the AL Supine group. The average angles of OA were 30.0 degrees (SD 13.5 degrees) in the AL group and 23.5 degrees (SD 8.2 degrees) in the AL Supine group. The hip numbers whose errors were less than 10 degrees were 13 hips in the AL group and 26 hips in the AL Supine group, respectively. There was significant difference in hip numbers whose errors of angles were less than 10 degrees between the AL and Supine groups. The hip numbers whose errors were less than 5 degrees were 7 hips in the AL group and only 6 hips in the AL Supine group, respectively. There was no significant difference in hip numbers whose errors of angles were less than 5 degrees between the AL and Supine groups. The error values of OI were less than 10 degrees except one hip in both groups. However, the error values of 25 hips in the AL group were more than 10 degrees.

In lateral position, the pelvis easily rotated when the affected lower extremity was extended, externally rotated, and adducted during the femoral preparation in the AL group, which resulted in malalignment of acetabular OA. In contrast, most hips could be set with the error values less than 10 degrees in the AL Supine position because the pelvis could be stabilised on the operative table. In addition, landmarks, such as bilateral antero-superior iliac spines and the symphysis pubis, were palpable in supine position. However, the hips with error values less than 5 degrees were only 6 out of 40 hips even though in supine position. Using MIS techniques, we can provide more stable hip joint just after surgery since the muscles surrounding hip joints can be preserved. We have to place acetabular cups in an optimum position to achieve wide range of hip motion to prevent dislocation and to provide limitation-free daily activities for patients. These data suggests that we should use more accurate guide systems for acetabular cup replacement such as navigation systems, patient specific templates, and patient specific mechanical instruments to place acetabular cups in an optimum position.