The efficacy of Virtual Reality (VR) as a teaching augment for arthroplasty has not been well examined for unfamiliar multistep procedures such as unicompartmental knee arthroplasty (UKA). This study sought to determine if VR improves surgical competence over traditional procedural preparation when performing a UKA. 22 Orthopaedic trainees were randomized to training sessions: 1) “VR group” with access to an immersive VR learning module that had been designed in conjunction with the manufacturer or 2) “Guide group” with access to manufacture's technique guide and surgical video. Both groups then performed a full UKA on SawBones models. Surgical competence was assessed via Objective Structures Assessment of Technical Skills (OSATS) validated rating system (max 25 points).Introduction
Methods
Instability accounts for one third of revision total hip arthroplasty(rTHA) performed in the United Kingdom. Removal of well-fixed femoral stems in rTHA is challenging with a risk of blood loss and iatrogenic damage to the femur. The Bioball Universal Adaptor (BUA) (Merete, Germany), a modular head neck extension adaptor, provides a mechanism for optimisation of femoral offset, leg length and femoral anteversion. This can avoid the need for femoral stem revision in selected cases. There is a relative paucity of clinical data available with the use of this device. The aim of this study is to present the clinical results and rate of instability following revision with this head neck adaptor at a minimum of two years' follow up.Introduction
Aim
While component malposition remains a major short and long term problem associated with total hip arthroplasty, enhanced technologies such as navigation and robotics have not yet been widely adopted. Both expense and increased OR time can be obstacles to adoption. The current study assesses the effect of the use of a smart mechanical navigation system on surgery time in total hip arthroplasty. 514 consecutive primary total hip arthroplasties were performed by a single surgeon from January 1, 2015 through March 31, 2016. Of these, 40 were performed using a smart mechanical navigation system (the HipXpert System, Surgical Planning Associates Inc., Boston, Massachusetts) and 474 were performed without navigation. The patients were not randomized. Incision to closure time (surgery time) was recorded for each procedure. A two tailed t-test was performed to assess statistical significance.Introduction
Patients and Methods
Dual modular femoral stems for total hip arthroplasty were initially introduced to optimize joint biomechanics. These implants have been recalled due to fretting and crevice corrosion at the stem-neck interface, ultimately necessitating revision in a significant number of patients. At our institution we had experience with the Rejuvenate (Stryker, Mahwah, NJ) dual modular stem from 2009 until 2011 before it's recall in 2012. This study identifies complications encountered in patients requiring revision of this prosthesis. We retrospectively identified all patients who had one particular dual modular stem using our registry database. All patients’ charts and imaging was reviewed using our electronic medical records and digital imaging programs. Patients’ age, gender, revision date, intraoperative and postoperative complications, need for subsequent surgery were identified.Introduction
Methods
Corrosion of modular tapers is increasingly recognized as a source of adverse tissue reaction (ALTR) and revision surgery in total hip arthroplasty (THA). The incidence of corrosion and rate of revision for ALTR may differ among different types of implants. The objective of this study was to determine if a difference exists in rate of THA revision for corrosion and ALTR with tapered broach only stems compared to ream-broach femoral stems.INTRODUCTION
OBJECTIVE