Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 84 - 84
1 Mar 2013
Jenabzadeh R Munir S Burke J Walter WK Zicat B Walter WL
Full Access

Introduction

The Delta Motion device (developed by Finsbury Orthopaedics, Leatherhead, United Kingdom, now manufactured by DePuy, Leeds, United Kingdom) is a pre-assembled factory fitted cup. It has been introduced to overcome some of the concerns relating to intra-operative assembly with improper seating of the liner and chipping. This device has a thinner shell and liner in comparison with other cups, allowing the use of larger sized heads which should help reduce the risk of impingement and dislocation. A drawback of the pre-assembled design is the inability to use supplementary screws to achieve stability and the difficulty in obtaining primary stability compared with a thin titanium shell. To date we are not aware of any publications reviewing the outcomes of these devices.

Methods

206 DeltaMotion cups were implanted in 195 patients, between Dec 2008 to Dec 2009 by the three senior authors. All the hips had the same stem (Osteonics) and a ceramic head was used. Data was prospectively collected and we reflect on our two year results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 127 - 127
1 Mar 2013
Cross MB Esposito C Sokolova A Jenabzadeh R Molloy D Munir S Zicat B Walter WK Walter WL
Full Access

Introduction

Modularity is being increasingly used throughout the world for both primary and revision total hip arthroplasty. Recently there have been concerns of increased corrosion and fretting at the modular junctions. In the SROM® modular hip system, two modular junctions are the head-neck taper junction and the stem-sleeve taper junction. The aim of this study was to investigate corrosion at these junctions with the use of different bearing materials.

Methods

Between 1994 and 2012, fourty-two patients were revised with SROM® stems. Reasons for revision included aseptic loosening of the cup or stem (11), periprosthetic fracture (2), osteolysis (8), dislocation (13) and other reasons (7). One was revised for stem breakage, and this was excluded from this study. We examined 41 retrieved S-ROM® comprised of 6 metal-on-metal (MOM), 12 metal-on-polyethylene (MOP), 7 ceramic-on-polyethylene (COP) and 16 ceramic-on-ceramic (COC). The orientation for all components was marked at the time of revision surgery. Both the proximal sleeve/stem and the femoral head-neck modular junctions were examined under 10X magnification, and graded by two independent observers. The head tapers were divided into 4 regions, and graded using a previously published 3 point scoring system for fretting and corrosion damage (Goldberg et al, Kop et al), for a total corrosion damage score of 12. The SROM stems were also assessed at the sleeve/stem taper junction. Each stem was divided into 8 quadrants, and graded for corrosion and fretting using the same system as the taper. In addition to severity, we also quantified area of corrosion damage of the stem at the sleeve-stem junction from 0–3, which was multiplied by the severity of damage, to give a score out of 9 for each quadrant (maximum total score of 72 for the stem). The bearing type was unknown to the investigators, so the grading was done in a blinded fashion. Corrosion scores were divided by time to account for differences in time to revision.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 59 - 59
1 Mar 2013
Esposito C Roques A Tuke M Zicat B Walter WK Walsh W Walter WL
Full Access

Introduction

Edge loading commonly occurs in all bearings in hip arthroplasty. Edge loading wear can occur in these bearings when the biomechanical loading axis reaches the edge and the femoral head loads the edge of the cup producing wear damage on both the head and cup edge. When the biomechanical loading axis passes through the polished articulating surface of the acetabular component and does not reach the edge, the center of the head and the center of the cup are concentric. The resulting wear known as concentric wear is low in metal-on-metal (MOM) bearings, and is negligible in ceramic-on-ceramic (COC) bearings. Edge loading is well defined in COC hip bearings. However, edge loading is difficult to identify in MOM bearings, since the metal bearing surfaces do not show wear patterns macroscopically. The aims of this study are to compare edge loading wear rates in COC and MOM bearings, and to relate edge loading to clinical complications.

Materials and Methods

Twenty-nine failed large diameter metal-on-metal hip bearings (17 total hips, 12 resurfacings) were compared to 54 failed alumina-on-alumina bearings collected from 1998 to 2011. Most COC bearings were revised for aseptic loosening or periprosthetic bone fracture, while most MOM bearings were revised for pain, soft tissue reactions or impingement. The median time to revision was 3.2 years for the metal hip bearings and 3.5 years for alumina hip bearings. The surface topography of the femoral heads was measured using a RedLux AHP (Artificial Hip Profiler, RedLux Ltd, Southampton, UK).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 60 - 60
1 Mar 2013
Esposito C Oliver R Campbell P Walter WK Walter WL Walsh W
Full Access

In patients with conventional metal-on-Polyethylene (MoP) hip replacements, osteolysis can occur in response to wear debris. During revision hip surgery, surgeons usually remove the source of osteolysis (polyethylene) but cannot always remove all of the inflammatory granulomatous tissues in the joint. We used a human/rat xenograft model to evaluate the effects of polyethylene granuloma tissues on bone healing. Human osteoarthritic and periprosthetic tissues collected during primary and revision hip arthroplasty surgeries were transplanted into the distal femora of athymic (nude) rats. The tissues were assessed before and after implantation and the bone response to the tissues was evaluated after 1 week and 3 weeks using micro-computed tomography, histology, and immunohistochemistry. After 3 weeks, the majority (70%) of defects filled with osteoarthritic tissues healed, while only 21% of defects with polyethylene granuloma tissues healed. Polyethylene granuloma tissues in trabecular bone defects inhibited bone healing. Surgeons should remove polyethylene granuloma tissues during revision surgery when possible, since these tissues may slow bone healing around a newly implanted prosthesis. This model provides a method for delivering clinically relevant sized particles into an in vivo model for investigation.