The optimal method of tibial component fixation remains uncertain
in total knee arthroplasty (TKA). Hydroxyapatite coatings have been
applied to improve bone ingrowth in uncemented designs, but may
only coat the directly accessible surface. As peri-apatite (PA)
is solution deposited, this may increase the coverage of the implant
surface and thereby fixation. We assessed the tibial component fixation
of uncemented PA-coated TKAs Patients were randomised to PA-coated or cemented TKAs. In 60
patients (30 in each group), radiostereometric analysis of tibial
component migration was evaluated as the primary outcome at baseline,
three months post-operatively and at one, two and five years. A
linear mixed-effects model was used to analyse the repeated measurements.Aims
Patients and Methods
The widely used and well-proven Palacos R (a.k.a. Refobacin Palacos
R) bone cement is no longer commercially available and was superseded
by Refobacin bone cement R and Palacos R + G in 2005. However, the
performance of these newly introduced bone cements have not been
tested in a phased evidence-based manner, including roentgen stereophotogrammetric
analysis (RSA). In this blinded, randomised, clinical RSA study, the migration
of the Stanmore femoral component was compared between Refobacin
bone cement R and Palacos R + G in 62 consecutive total hip arthroplasties.
The primary outcome measure was femoral component migration measured
using RSA and secondary outcomes were Harris hip score (HHS), Hip
disability and Osteoarthritis Outcome Score (HOOS), EuroQol 5D (EQ-5D)
and Short Form 36 (SF-36).Aims
Patients and Methods
An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans.Objectives
Materials and Methods
The most common reasons for revision of unicompartmental
knee arthroplasty (UKA) are loosening and pain. Cementless components
may reduce the revision rate. The aim of this study was to compare
the fixation and clinical outcome of cementless and cemented Oxford
UKAs. A total of 43 patients were randomised to receive either a cemented
or a cementless Oxford UKA and were followed for two years with
radiostereometric analysis (RSA), radiographs aligned with the bone–implant
interfaces and clinical scores. The femoral components migrated significantly during the first
year (mean 0.2 mm) but not during the second. There was no significant
difference in the extent of migration between cemented and cementless
femoral components in either the first or the second year. In the
first year the cementless tibial components subsided significantly
more than the cemented components (mean 0.28 mm ( As second-year migration is predictive of subsequent loosening,
and as radiolucency is suggestive of reduced implant–bone contact,
these data suggest that fixation of the cementless components is
at least as good as, if not better than, that of cemented devices. Cite this article:
Wear of polyethylene inserts plays an important role in failure
of total knee replacement and can be monitored Before revision, the minimum joint space width values and their
locations on the insert were measured in 15 fully weight-bearing
radiographs. These measurements were compared with the actual minimum
thickness values and locations of the retrieved tibial inserts after
revision. Introduction
Method
Mobile-bearing (MB) total knee replacement (TKR)
was introduced to reduce the risk of aseptic loosening and wear of
polyethylene inserts. However, no consistent clinical advantages
of mobile- over fixed-bearing (FB) TKR have been found. In this
study we evaluated whether mobile bearings have an advantage over
fixed bearings with regard to revision rates and clinical outcome
scores. Furthermore, we determined which modifying variables affected
the outcome. A systematic search of the literature was conducted to collect
clinical trials comparing MB and FB in primary TKR. The primary
outcomes were revision rates for any reason, aseptic loosening and
wear. Secondary outcomes included range of movement, Knee Society
score (KSS), Oxford knee score (OKS), Short-Form 12 (SF-12) score
and radiological parameters. Meta-regression techniques were used
to explore factors modifying the observed effect. Our search yielded 1827 publications, of which 41 studies met
our inclusion criteria, comprising over 6000 TKRs. Meta-analyses
showed no clinically relevant differences in terms of revision rates,
clinical outcome scores or patient-reported outcome measures between
MB and FB TKRs. It appears that theoretical assumptions of superiority
of MB over FB TKR are not borne out in clinical practice. Cite this article:
This single-blinded randomised controlled trial
investigated whether one design of mobile-bearing (MB) total knee replacement
(TKR) has any advantage over a fixed-bearing (FB) design on long-term
fixation as measured by radiostereometry. The amount of wear underneath
the mobile bearing was also evaluated. A series of 42 knees was randomised
to MB or FB tibial components with appropriate polyethylene inserts
and followed for between ten and 12 years, or until the death of
the patient. The polyethylene in the MB group was superior in that
it was gamma-irradiated in inert gas and was calcium-stearate free;
the polyethylene in the FB group was gamma-irradiated in air and
contained calcium stearate. In theory this should be advantageous
to the wear rate of the MB group. At final follow-up the overall
mean migration was 0.75 mm ( For the MB group, the mean linear wear rate on the under-surface
was 0.026 mm/year (
The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.
Mechanical loosening which begins with early-onset migration of the prosthesis is the major reason for failure of the Souter-Strathclyde elbow replacement. In a prospective study of 18 Souter-Strathclyde replacements we evaluated the patterns of migration using roentgen stereophotogrammetric analysis. We had previously reported the short-term results after a follow-up of two years which we have now extended to a mean follow-up of 8.2 years (1 to 11.3). Migration was assessed along the co-ordinal axes and overall micromovement was expressed as the maximum total point movement. The alignment of the prosthesis and the presence of radiolucent lines were examined on conventional standardised radiographs. All the humeral components showed increased and variable patterns of migration at the extended follow-up and four humeral components were revised. The maximum total point movement at two years in the revised prostheses was 1.8 mm (
The incidence of loosening of a cemented glenoid component in total shoulder arthroplasty, detected by means of radiolucent lines or positional shift of the component on true antero-posterior radiographs, has been reported to be between 0% to 44%. These numbers depend on the criteria used for loosening and on the length of follow-up. Radiolucent lines are however difficult to detect and to interpret, because of the mobility of the shoulder girdle and the obliquity of the glenoid, which hinder standardisation of radiographs. After review of radiolucencies around cemented glenoid components with a mean follow-up of 5. 3 years in 48 patients we found progressive changes to be present predominantly at the inferior pole of the component. This may hold a clue for the mechanism behind loosening of this implant. Since loosening is generally defined as a complete radiolucent line around the glenoid component and is difficult to assess as a result of the oblique orientation of the glenoid, an underestimation of the loosening rate using radiological data was suspected. Therefore a pilot study using Roentgen Stereophotogrammatric Analysis (RSA) was performed. In five patients an additional analysis of glenoid component loosening using digital Roentgen Stereophotogrammetric Analysis (RSA) was performed. The relative motion of the glenoid component with respect to the scapula was assessed and the length of this translation vector was used to represent migration. Loosening was defined as a migration of the component, exceeding the pessimistic estimate of the accuracy of RSA 0. 3 mm for this study. After three years of follow-up, three out of five glenoid components had loosened (1. 2 – 5. 5 mm migration). In only one patient with a gross loosened glenoid, the radiological signs were consistent with the RSA findings. It was concluded that when traditional radiographs are used for assessment of early loosening, the loosening rate is underestimated. We recommend that RSA be used for this.
The aim of this study was on the one hand to compare the fixation of a posterior stabilised prosthesis (PS) and a PCL retaining mobile bearing design (Interax, How-medica Osteonics, Rutherfort, USA) and on the other hand to measure the mobility of the mobile bearing. All measurements were carried out by means of Roentgen Stereophotogrammetric Analysis (RSA-CMS, Medis, Netherlands). Thirty-three patients with a total of forty-two consecutive primary cemented TKA were included in a prospective, randomised study at Leiden University Medical Centre. There were no significant differences among the two groups with regard to age (66. 5 ± 12. 1 years). The pre-operative Knee Society Score did not differ significantly between the two groups. At the one-year follow-up the PS group showed a significantly lower function score (p=0. 04) compared to the mobile bearing group. At the one-year follow-up evaluation, the micromotion of the PS-components and the mobile bearing components were not significantly different. The PS-tibial components subsided −0. 003 ± 0. 192 mm and the mobile bearing knee tibial components subsided 0. 057 ± 0. 082 mm. The PS tibial component showed a higher variability in the migration results indicating a number of PS with rather large micromotion. For three patients, the The wide range of kinematic patterns of mobile bearings during flexion that is observed in fluoroscopic studies is also observed in this study. A possible positive effect of mobile bearing movement may be found in the smaller variability of the micromotion of the mobile-bearing knees compared to the PS knees. The assumption was that shear forces in tibial bones implanted with a mobile bearing prosthesis would be better dissipated from the prosthesis-bone interface resulting in less micromotion. The kinematics of an additional number of mobile bearing knees -already included in the micro-motion study- will have to be assessed in order to determine the relation between mobility and micromotion. Mobile bearing, Posterior Stabilised, RSA, Kinematics
The incidence of loosening of a cemented glenoid componentin total shoulder arthroplasty, detected by means of radiolucent lines or positional shift of the component on true anteroposterior radiographs, has been reported to be between 0% and 44%. Radiolucent lines are, however, difficult to detect and to interpret because of the mobility of the shoulder girdle and the obliquity of the glenoid which hinder standardisation of radiographs. We examined radiolucencies around cemented glenoid components in 48 patients, with a mean follow-up of 5.3 years, and found progressive changes to be present predominantly at the inferior pole of the component. This may hold a clue for the mechanism of loosening of this implant. In five patients we performed an additional analysis of loosening of the glenoid component using digital roentgen stereophotogrammetric analysis (RSA). After three years, three of the five implants had loosened (migration 1.2 to 5.5 mm). In only one, with gross loosening, were the radiological signs consistent with the RSA findings. When traditional radiographs are used for assessment, the rate of early loosening is underestimated. We recommend that RSA be used for this.