header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 26 - 26
1 Oct 2015
Udeze C Jones E Riley G Morrissey D Screen H
Full Access

Introduction

Tendinopathies are debilitating and painful conditions. They are believed to result from repetitive overuse, which can create micro-damage that accumulates over time, and initiates a catabolic cell response. The aetiology of tendinopathy remains poorly understood, therefore the ideal treatment remains unclear. However, current data support the use of eccentric exercise as an effective treatment. In a previous study, we have shown that eccentric loading generates perturbations in the tendon at 10Hz, which is not present during other less effective loading regimes. Consequently, we hypothesis that 10Hz loading initiates an increased anabolic response in tenocytes, that can promote tendon repair.

Materials and Methods

Human tenocytes from healthy hamstring tendons and tendinopathic Achilles tendons were derived by collagenase digest and outgrowth respectively. Tenocytes were seeded into 3D collagen gels. The gels were fixed in custom-made chambers and placed in an incubator for 24hrs whilst gene expression stabilised. After 24hrs, cyclic uniaxial strain at 1% ± 1% was applied to the cells, at either 1Hz (n=4) or 10Hz (n=4) using a Bose loading system. After 15 minutes of cyclic strain, the samples were maintained in chambers under 1% static strain for 24 hrs after which gene expression was characterised using RT-PCR.