header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE EFFECT OF LOADING FREQUENCY ON TENOCYTE METABOLISM

British Society for Matrix Biology (BSMB) Satellite Meeting: ‘Advances in Tendon Research: From Bench to Bedside’



Abstract

Introduction

Tendinopathies are debilitating and painful conditions. They are believed to result from repetitive overuse, which can create micro-damage that accumulates over time, and initiates a catabolic cell response. The aetiology of tendinopathy remains poorly understood, therefore the ideal treatment remains unclear. However, current data support the use of eccentric exercise as an effective treatment. In a previous study, we have shown that eccentric loading generates perturbations in the tendon at 10Hz, which is not present during other less effective loading regimes. Consequently, we hypothesis that 10Hz loading initiates an increased anabolic response in tenocytes, that can promote tendon repair.

Materials and Methods

Human tenocytes from healthy hamstring tendons and tendinopathic Achilles tendons were derived by collagenase digest and outgrowth respectively. Tenocytes were seeded into 3D collagen gels. The gels were fixed in custom-made chambers and placed in an incubator for 24hrs whilst gene expression stabilised. After 24hrs, cyclic uniaxial strain at 1% ± 1% was applied to the cells, at either 1Hz (n=4) or 10Hz (n=4) using a Bose loading system. After 15 minutes of cyclic strain, the samples were maintained in chambers under 1% static strain for 24 hrs after which gene expression was characterised using RT-PCR.

Results

In healthy cells, data showed an increase in expression of all analysed genes after loading (MMP1, MMP2, MMP13, COL1A1, COL3A1, COL5A1, ADAMTS5, IL6, IL8 and TIMP3). Furthermore, the increase in gene expression was larger in the higher frequency loading group, across all genes. Tendinopathic cells showed a more varied response, with upregulation of MMP1, MMP13, COL3A1, ADAMTS5, IL6 and IL8, and downregulation of COL1A1 and COL5A1. Once again, all changes were more pronounced in the higher frequency loading group.

Discussion

These preliminary data suggest increased matrix turnover as a result of loading, particularly with high frequency loading in healthy tenocytes, whilst the profile of tendinopathic cells, may indicate an early healing response, where collagen type III is preferentially unregulated relative to types I and V. High frequency loading elicited a more pronounced cellular response, perhaps correlating with the improved repair seen with eccentric loading in vivo.


Email: